We report on the characterization of Tic56, a unique component of the recently identified 1-MD translocon at the inner envelope membrane of chloroplasts (TIC) in Arabidopsis (Arabidopsis thaliana) comprising Tic20, Tic100, and Tic214. We isolated Tic56 by copurification with Tandem Affinity Purification-tagged Toc159 in the absence of precursor protein, indicating spontaneous and translocation-independent formation of the translocon at the outer envelope membrane of chloroplasts (TOC) and TIC supercomplexes. Tic56 mutant plants have an albino phenotype and are unable to grow without an external carbon source. Using specific enrichment of protein amino termini, we analyzed the tic56-1 and plastid protein import2 (toc159) mutants to assess the in vivo import capacity of plastids in mutants of an outer and inner envelope component of the anticipated TOC-TIC supercomplex. In both mutants, we observed processing of several import substrates belonging to various pathways. Our results suggest that despite the severe developmental defects, protein import into Tic56-deficient plastids is functional to a considerable degree, indicating the existence of alternative translocases at the inner envelope membrane.
A new convenient room-temperature template-free route for high-yield synthesis of double-walled bismuth nanotubes through the treatment of solid bismuth monoiodide with n-butyllithium is presented. Scanning electron microscopy and transmission electron microscopy observations of the product show uniform one-dimensional nanoparticles with high aspect ratios and lengths up to several hundred nanometers. Investigations of the cross sections of the bismuth nanotubes reveal an inner diameter of about 4.5 nm and an outer diameter of 6 nm. The tube walls consist of two coaxial cylinders, and the estimated thickness of the double-wall of about 0.75 nm matches quite properly two layers in the rhombohedral bismuth bulk structure.
As most COVID-19 patients only receive thoracic CT scans, but body composition, which is relevant to detect sarcopenia, is determined in abdominal scans, this study aimed to investigate the relationship between thoracic and abdominal CT body composition parameters in a cohort of COVID-19 patients. This retrospective study included n = 46 SARS-CoV-2-positive patients who received CT scans of the thorax and abdomen due to severe disease progression. The subcutaneous fat area (SF), the skeletal muscle area (SMA), and the muscle radiodensity attenuation (MRA) were measured at the level of the twelfth thoracic (T12) and the third lumbar (L3) vertebra. Necessity of invasive mechanical ventilation (IMV), length of stay, or time to death (TTD) were noted. For statistics correlation, multivariable linear, logistic, and Cox regression analyses were employed. Correlation was excellent for the SF (r = 0.96) between T12 and L3, and good for the respective SMA (r = 0.80) and MRA (r = 0.82) values. With adjustment (adj.) for sex, age, and body-mass-index the variability of SF (adj. r2 = 0.93; adj. mean difference = 1.24 [95% confidence interval (95% CI) 1.02–1.45]), of the SMA (adj. r2 = 0.76; 2.59 [95% CI 1.92–3.26]), and of the MRA (adj. r2 = 0.67; 0.67 [95% CI 0.45–0.88]) at L3 was well explained by the respective values at T12. There was no relevant influence of the SF, MRA, or SMA on the clinical outcome. If only thoracic CT scans are available, CT body composition values at T12 can be used to predict abdominal fat and muscle parameters, by which sarcopenia and obesity can be assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.