Background In chicken, loss of TALPID3 results in non-functional cilia and short-rib polydactyly syndrome. This phenotype is caused by a frameshift mutation in the chicken ortholog of the human KIAA0586 gene, which encodes a novel coiled-coil domain protein essential for primary ciliogenesis, suggesting that KIAA0586 can be associated with ciliopathy in human beings. Methods In our patients with ciliopathy (http://www.clinicaltrials.gov: NCT00068224), we have collected extensive clinical and neuroimaging data from affected individuals, and performed whole exome sequencing on DNA from affected individuals and their parents. We analysed gene expression on fibroblast cell line, and determined the effect of gene mutation on ciliogenesis in cells derived from patients. Results We identified biallelic mutations in the human TALPID3 ortholog, KIAA0586, in six children with findings of overlapping Jeune and Joubert syndromes. Fibroblasts cultured from one of the patients with Jeune–Joubert syndrome exhibited more severe cilia defects than fibroblasts from patients with only Joubert syndrome; this difference was reflected in KIAA0586 RNA expression levels. Rescue of the cilia defect with full-length wild type KIAA0586 indicated a causal link between cilia formation and KIAA0586 function. Conclusions Our results show that biallelic deleterious mutations in KIAA0586 lead to Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Furthermore, our results confirm that KIAA0586/TALPID3 is essential in cilia formation in human beings, expand the KIAA0586 phenotype to include features of Jeune syndrome and provide a pathogenetic connection between Joubert and Jeune syndromes, based on aberrant ciliogenesis.
Joubert and Meckel-Gruber syndromes (JS and MGS) are ciliopathies with overlapping features. JS patients manifest the "molar tooth sign" on brain imaging and variable eye, kidney, and liver disease. MGS presents with polycystic kidneys, occipital encephalocele, and polydactyly; it is typically perinatally fatal. Both syndromes are genetically heterogeneous; some genes cause either syndrome. Here, we report two brothers married to unrelated women. The first brother had three daughters with JS and a son with polycystic kidneys who died at birth. The second brother's wife had a fetal demise due to MGS. Whole exome sequencing identified TMEM231 NM_001077416.2: c.784G>A; p.(Asp262Asn) in all children and the wife of the first brother; the second brother's wife had a c.406T>G;p.(Trp136Gly) change. In-depth analysis uncovered a rare gene conversion event in TMEM231, leading to loss of exon 4, in all the affected children of first brother. We believe that the combination of this gene conversion with different missense mutations led to a spectrum of phenotypes that span JS and MGS.
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.