Bottom-up patterning techniques allow for the creation of surfaces with ordered arrays of nanoscale features on large areas. Two bottom-up techniques suitable for the formation of regular nanopatterns on different length scales are nanosphere lithography (NSL) and block copolymer (BCP) lithography. In this paper it is shown that NSL and BCP lithography can be combined to easily design hierarchically nanopatterned surfaces of different materials. Nanosphere lithography is used for the pre-patterning of surfaces with antidots, i.e. hexagonally arranged cylindrical holes in thin films of Au, Pt and TiO2 on SiO2, providing a periodic chemical and topographical contrast on the surface suitable for templating in subsequent BCP lithography. PS-b-PMMA BCP is used in the second self-assembly step to form hexagonally arranged nanopores with sub-20 nm diameter within the antidots upon microphase separation. To achieve this the microphase separation of BCP on planar surfaces is studied, too, and it is demonstrated for the first time that vertical BCP nanopores can be formed on TiO2, Au and Pt films without using any neutralization layers. To explain this the influence of surface energy, polarity and roughness on the microphase separation is investigated and discussed along with the wetting state of BCP on NSL-pre-patterned surfaces. The presented novel route for the creation of advanced hierarchical nanopatterns is easily applicable on large-area surfaces of different materials. This flexibility makes it suitable for a broad range of applications, from the morphological design of biocompatible surfaces for life science to complex pre-patterns for nanoparticle placement in semiconductor technology.
Block copolymer (BCP) lithography is a versatile bottom‐up approach for the creation of regular nanoscale patterns on large surface areas. The pattern morphology evolving during the microphase separation of a BCP is strongly dependent on the polymer film thickness. Thus, surface wetting as well as interfacial energies between polymer and substrate determine the polymer behavior, however, the complex interplay of those effects is not yet fully understood. In this work, a model describing the film thickness dependence of BCP self‐assembly on prepatterned surfaces is proposed. Polymer dewetting on nanohole‐patterned surfaces is controlled using different prepattern dimensions, polymer amounts, and microphase‐separation temperatures. This is found to allow for a precise local film thickness modulation and thus allows to guide BCP self‐assembly into arrays of tailored hierarchical nanoarchitectures. Analytical calculations of the total surface free energies of the microphase‐separated polymer of different film thicknesses confined inside nanoholes confirm the model. The insights contribute to the understanding of fundamental processes in polymer dewetting and BCP self‐assembly and allow for the controlled creation of advanced hierarchical nanostructures on large areas for applications in optics, plasmonics, and biomedical devices.
Block copolymer lithography allows for the large-area patterning of surfaces with self-assembled nanoscale features. The created nanostructured polymer films can be applied as masks in common lithography processing steps, such as lift-off and etching for pattern replication and transfer. In this work, we discuss an approach to improve the pattern replication efficiency by modification of the polymer mask prior to lithographical use by means of an O2/Ar plasma treatment. We present a much better quality of pattern replication without loss of features, along with a precise tunability of feature sizes, that can be achieved by short mask treatment. We point out a correlation between nanopore position within the ordered arrays, expressed by its coordination number, the nanopore shape and the replication efficiency. Our experimental strategy to explain these correlations combines the indirect investigation of patterns replicated from the modified polymer masks and direct investigation of the mask top and bottom. Pattern replication is performed either in the form of gold nanodot arrays created via lift-off or nanopores transferred into a SiO2 substrate by reactive ion etching. The direct analysis of free polymer membranes released from the substrate reveals the nanopore shape at the mask top and bottom surfaces.
Block copolymer (BCP) self-assembly is a promising tool for next generation lithography as microphase separated polymer domains in thin films can act as templates for surface nanopatterning with sub-20 nm features. The replicated patterns can, however, only be as precise as their templates. Thus, the investigation of the morphology of polymer domains is of great importance. Commonly used analytical techniques (neutron scattering, scanning force microscopy) either lack spatial information or nanoscale resolution. Using advanced analytical (scanning) transmission electron microscopy ((S)TEM), we provide real space information on polymer domain morphology and interfaces between polystyrene (PS) and polymethylmethacrylate (PMMA) in cylinder- and lamellae-forming BCPs at highest resolution. This allows us to correlate the internal structure of polymer domains with line edge roughnesses, interface widths and domain sizes. STEM is employed for high-resolution imaging, electron energy loss spectroscopy and energy filtered TEM (EFTEM) spectroscopic imaging for material identification and EFTEM thickness mapping for visualisation of material densities at defects. The volume fraction of non-phase separated polymer species can be analysed by EFTEM. These methods give new insights into the morphology of polymer domains the exact knowledge of which will allow to improve pattern quality for nanolithography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.