Little is known about the formation of niches, local micro-environments required for stem cell maintenance. Here we develop an in vivo assay for adult hematopoietic stem cell (HSC) niche formation 1-2. With this assay, we identified a population of progenitor cells with surface markers CD45-Tie2-αV+CD105+Thy1.1- (CD105+Thy1-) that when sorted from 15.5 dpc fetal bones (fb) and transplanted under the adult mouse kidney capsule could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate, and generate a marrow cavity populated by host-derived long term reconstituting HSC (LT-HSC). In contrast, CD45-Tie2-αV+CD105+Thy1+ (CD105+Thy1+) fb progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and VEGF, inhibited niche generation 22-24. CD105+Thy1-progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay27. Collectively, our data implicates endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.
Upon intravenous transplantation, hematopoietic stem cells (HSCs) can home to specialized niches, yet most HSCs fail to engraft unless recipients are subjected to toxic preconditioning. We provide evidence that, aside from immune barriers, donor HSC engraftment is restricted by occupancy of appropriate niches by host HSCs. Administration of ACK2, an antibody that blocks c-kit function, led to the transient removal of >98% of endogenous HSCs in immunodeficient mice. Subsequent transplantation of these mice with donor HSCs led to chimerism levels of up to 90%. Extrapolation of these methods to humans may enable mild but effective conditioning regimens for transplantation.
Direct and indirect cytopathic mechanisms have been proposed to account for the loss of CD4+ T cells after infection with human immunodeficiency virus type 1 (HIV-1). We report here that HIV-1 infection of the human thymus in vivo results in thymocyte depletion by at least two different mechanisms. Thymocytes within multiple stages of differentiation are induced to die of apoptosis; most of these cells are uninfected. Additionally, thymopoiesis is interrupted by direct infection and destruction of intrathymic CD3-CD4+CD8- progenitor cells. These mechanisms are differentially induced by distinct isolates of HIV-1.
The two known complementation groups of Niemann-Pick Type C disease, NPC1 and NPC2, result from non-allelic protein defects. Both the NPC1 and NPC2 (HE1) gene products are intimately involved in cholesterol and glycolipid trafficking and/or transport. We describe mutation analysis on samples from 143 unrelated affected NPC patients using conformation sensitive gel electrophoresis and DNA sequencing as the primary mutation screening methods for NPC1 and NPC2, respectively. These methods are robust, sensitive, and do not require any specialized laboratory equipment. Analyses identified two NPC1 mutations for 115 (80.4%) patients, one NPC1 mutation for 10 (7.0%) patients, two NPC2 mutations for five (3.5%) patients, one NPC2 mutation for one (0.7%) patient, and no mutations for 12 (8.4%) patients. Thus, mutations were identified on 251 of 286 (88%) disease alleles, including 121 different mutations (114 in NPC1 and seven in NPC2), 58 of which are previously unreported. The most common NPC1 mutation, I1061T, was detected on 18% of NPC alleles. Other NPC1 mutations were mostly private, missense mutations located throughout the gene with clustering in the cysteine-rich luminal domain. Correlation with biochemical data suggests classification of several mutations as severe and others as moderate or variable. The region between amino acids 1038 and 1253, which shares 35% identity with Patched 1, appears to be a hot spot for mutations. Additionally, a high percentage of mutations were located at amino acids identical to the NPC1 homolog, NPC1L1. Biochemical complementation analysis of cases negative for mutations revealed a high percentage of equivocal results where the complementation group appeared to be non-NPC1 and non-NPC2. This raises the possibilities of an additional NPC complementation group(s) or non-specificity of the biochemical testing for NPC. These caveats must be considered when offering mutation testing as a clinical service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.