This study investigates the evolution of German Bight (southeastern North Sea) storminess from 1897 to 2018 through analysing upper quantiles of geostrophic wind speeds, which act as a proxy for past storm activity. Here, geostrophic wind speeds are calculated from triplets of mean sea level pressure observations that form triangles over the German Bight. The data used in the manuscript are provided by the International Surface Pressure Databank and the national meteorological services of Denmark, Germany, and the Netherlands. The derivation of storm activity is achieved by enhancing the established triangle proxy method via combining and merging storminess time series from numerous partially overlapping triangles in an ensemble-like manner. The utilized approach allows for the construction of robust, long-term and subdaily German Bight storminess time series. Further, the method provides insights into the underlying uncertainty of the time series. The results show that storm activity over the German Bight is subject to multidecadal variability. The latest decades are characterized by an increase in activity from the 1960s to the 1990s, followed by a decline lasting into the 2000s and below-average activity up until present. The results are backed through a comparison with reanalysis products from four datasets, which provide high-resolution wind and pressure data starting in 1979 and offshore wind speed measurements taken from the FINO-WIND project. This study also finds that German Bight storminess positively correlates with storminess in the NE Atlantic in general. In certain years, however, notably different levels of storm activity in the two regions can be found, which likely result from shifted large-scale circulation patterns.
<p>We present the CMIP6 version of the Max Planck Institute-Grand Ensemble (MPI-GE CMIP6) with 30 realisations for the historical period and five emission scenarios. The power of MPI-GE CMIP6 goes beyond its predecessor ensemble MPI-GE by providing high-frequency model output, the full range of emission scenarios including the highly policy relevant scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to high resolution simulations of the same model version. We demonstrate with six novel application examples how to use the power of MPI-GE CMIP6 to better quantify and understand present and future extreme events in the Earth system, to inform about uncertainty in approaching Paris Agreement global warming limits, and to combine large ensembles and artificial intelligence. For instance, MPI-GE CMIP6 allows us to show that the recently observed Siberian and Pacific North American heat waves are projected to occur every year in 2071-2100 in high-emission scenarios, that the storm activity in most tropical to mid-latitude oceans is projected to decrease, and that the ensemble is sufficiently large to be used for infilling surface temperature observations with artificial intelligence.</p>
Abstract. We evaluate the prediction skill of the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcast system for German Bight storm activity (GBSA) on a multiannual to decadal scale. We define GBSA every year via the most extreme 3-hourly geostrophic wind speeds, which are derived from mean sea-level pressure (MSLP) data. Our 64-member ensemble of annually initialized hindcast simulations spans the time period 1960–2018. For this period, we compare deterministically and probabilistically predicted winter MSLP anomalies and annual GBSA with a lead time of up to 10 years against observations. The model produces poor deterministic predictions of GBSA and winter MSLP anomalies for individual years but fair predictions for longer averaging periods. A similar but smaller skill difference between short and long averaging periods also emerges for probabilistic predictions of high storm activity. At long averaging periods (longer than 5 years), the model is more skillful than persistence- and climatology-based predictions. For short aggregation periods (4 years and less), probabilistic predictions are more skillful than persistence but insignificantly differ from climatological predictions. We therefore conclude that, for the German Bight, probabilistic decadal predictions (based on a large ensemble) of high storm activity are skillful for averaging periods longer than 5 years. Notably, a differentiation between low, moderate, and high storm activity is necessary to expose this skill.
Single-model initial-condition large ensembles are powerful tools to quantify the forced response, internal climate variability, and their evolution under global warming. Here, we present the CMIP6 version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6) with 30 realisations for the historical period and five emission scenarios. The power of MPI-GE CMIP6 goes beyond its predecessor ensemble MPI-GE by providing high-frequency output, the full range of emission scenarios including the highly policy-relevant low emission scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to complementary high-resolution simulations. First, we describe MPI-GE CMIP6, evaluate it with observations and reanalyses and compare it to MPI-GE. Then, we demonstrate with six novel application examples how to use the power of the ensemble to better quantify and understand present and future climate extremes, to inform about uncertainty in approaching Paris Agreement global warming limits, and to combine large ensembles and artificial intelligence. For instance, MPI-GE CMIP6 allows us to show that the recently observed Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year return periods in 2071-2100 with low emission scenarios, that recently observed European precipitation extremes are captured only by complementary high-resolution simulations, and that 3-hourly output projects a decreasing activity of storms in mid-latitude oceans. Further, the ensemble is ideal for estimates of probabilities of crossing global warming limits and the irreducible uncertainty introduced by internal variability, and is sufficiently large to be used for infilling surface temperature observations with artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.