A new class of cationic polymers containing tertiary amine, thioether, and hydroxyl groups are prepared via a catalyst‐free, multicomponent polymerization method using dithiol, formaldehyde, and di‐sec‐amine with a ratio of 1:2:1, to access a library of water‐soluble polymers with well‐defined structures and suitable molecular weights (Mw ranging from 5000 to 8000 Da) in high yields (up to 90%). Such polycations are demonstrated to be promising nonviral gene delivery vectors with high transfection efficiency (up to 3.5‐fold of PEI25k) and low toxicity with multiple functionalities: 1) efficient gene condensation by tertiary amine groups; 2) reactive oxygen species scavenging by thioether groups; and 3) positive charge shielding by hydroxyl groups. Both the thioether and hydroxyl groups are contributed to reduce the cytotoxicity of the polycations by tuning the oxidative stress and preventing the undesired serum binding. The optimized polycations can achieve high transfection efficiency under the serum conditions, indicating the great potential as a nonviral gene delivery vector candidate for clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.