Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations— we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at . 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium () with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process.
The human Tar-DNA binding protein, TDP-43, is associated with amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. TDP-43 contains two conserved RNA-binding motifs and has documented roles in RNA metabolism, including pre-mRNA splicing and repression of transcription. Here, using Drosophila melanogaster as a model, we generated loss-of-function and overexpression genotypes of Tar-DNA binding protein homolog (TBPH) to study their effect on the transcriptome of the central nervous system (CNS). By using massively parallel sequencing methods (RNA-seq) to profile the CNS, we find that loss of TBPH results in widespread gene activation and altered splicing, much of which are reversed by rescue of TBPH expression. Conversely, TBPH overexpression results in decreased gene expression. Although previous studies implicated both absence and mis-expression of TDP-43 in ALS, our data exhibit little overlap in the gene expression between them, suggesting that the bulk of genes affected by TBPH loss-of-function and overexpression are different. In combination with computational approaches to identify likely TBPH targets and orthologs of previously identified vertebrate TDP-43 targets, we provide a comprehensive analysis of enriched gene ontologies. Our data suggest that TDP-43 plays a role in synaptic transmission, synaptic release, and endocytosis. We also uncovered a potential novel regulation of the Wnt and BMP pathways, many of whose targets appear to be conserved.
The clinical need for methods to repair and regenerate large cartilage and bone lesions persists. One way to make new headway is to study skeletal regeneration when it occurs naturally. Cartilage repair is typically slow and incomplete. However, an exception to this observation can be found in the costal cartilages, where complete repair has been reported in humans but the cellular and molecular mechanisms have not yet been characterized. In this study, we establish a novel animal model for cartilage repair using the mouse rib costal cartilage. We then use this model to test the hypothesis that the perichondrium, the dense connective tissue that surrounds the cartilage, is a tissue essential for repair. Our results show that full replacement of the resected cartilage occurs quickly (within 1 to 2 months) and properly differentiates but that repair occurs only in the presence of the perichondrium. We then provide evidence that the rib perichondrium contains a special niche that houses chondrogenic progenitors that possess qualities particularly suited for mediating repair. Label-retaining cells can be found within the perichondrium that can give rise to new chondrocytes. Furthermore, the perichondrium proliferates and thickens during the healing period and when ectopically placed can generate new cartilage. In conclusion, we have successfully established a model for hyaline cartilage repair in the mouse rib, which should be useful for gaining a more detailed understanding of cartilage regeneration and ultimately for developing methods to improve cartilage and bone repair in other parts of the skeleton.
When loosely packed water-saturated granular soils, for example sands, are subjected to strong earthquake shaking, they may liquefy, causing large deformations with great destructive power. The phenomenon is quite general and occurs in any fluid-saturated granular material and is a consequence of the transfer of stress from inter-grain contacts to water pressure. In modern geotechnical practice, soil liquefaction is commonly considered to be an ‘undrained’ phenomenon; pressure is thought to be generated because earthquake deformations are too quick to allow fluid flow, which enables water depressurization. Here, we show via a first principles analysis that liquefaction is not a strictly undrained process; and, in fact, it is the interplay between grain rearrangement, fluid migration and changes in permeability, which causes the loss of strength observed in so many destructive earthquake events around the world. The results call into question many of the common laboratory and field methods of evaluating the liquefaction resistance of soil and indicate new directions for the field, laboratory and scale-model study of this important phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.