In Escherichia coli, the Cpx two-component regulatory system activates expression of protein folding and degrading factors in response to misfolded proteins in the bacterial envelope (inner membrane, periplasm, and outer membrane). It is comprised of the histidine kinase CpxA and the response regulator CpxR. This response plays a role in protection from stresses, such as elevated pH, as well as in the biogenesis of virulence factors. Here, we show that the Cpx periplasmic stress response is subject to amplification and repression through positive and negative autofeedback mechanisms. Western blot and operon fusion analyses demonstrated that the cpxRA operon is autoactivated. Conditions that lead to elevated levels of phosphorylated CpxR cause a concomitant increase in transcription ofcpxRA. Conversely, overproduction of CpxP, a small, Cpx-regulated protein of previously unknown function, represses the regulon and can block activation of the pathway. This repression is dependent on an intact CpxA sensing domain. The ability to autoactivate and then subsequently repress allows for a temporary amplification of the Cpx response that may be important in rescuing cells from transitory stresses and cueing the appropriately timed elaboration of virulence factors.
Background There is a continued need for strategies to prevent influenza. While cetylpyridinium chloride (CPC), a broad-spectrum antimicrobial agent, has an extensive antimicrobial spectrum, its ability to affect respiratory viruses has not been studied in detail. Objectives Here, we evaluate the ability of CPC to disrupt influenza viruses in vitro and in vivo. Methods The virucidal activity of CPC was evaluated against susceptible and oseltamivir-resistant strains of influenza viruses. The effective virucidal concentration (EC) of CPC was determined using a hemagglutination assay and tissue culture infective dose assay. The effect of CPC on viral envelope morphology and ultrastructure was evaluated using transmission electron microscopy (TEM). The ability of influenza virus to develop resistance was evaluated after multiple passaging in sub-inhibitory concentrations of CPC. Finally, the efficacy of CPC in formulation to prevent and treat influenza infection was evaluated using the PR8 murine influenza model. Results The virucidal effect of CPC occurred within 10 minutes, with mean EC50 and EC2log ranging between 5 to 20 μg/mL, for most strains of influenza tested regardless of type and resistance to oseltamivir. Examinations using TEM showed that CPC disrupted the integrity of the viral envelope and its morphology. Influenza viruses demonstrated no resistance to CPC despite prolonged exposure. Treated mice exhibited significantly increased survival and maintained body weight compared to untreated mice. Conclusions The antimicrobial agent CPC possesses virucidal activity against susceptible and resistant strains of influenza virus by targeting and disrupting the viral envelope. Substantial virucidal activity is seen even at very low concentrations of CPC without development of resistance. Moreover, CPC in formulation reduces influenza-associated mortality and morbidity in vivo.
We describe a new form of inherited immunodeficiency revealed by an N-ethyl-N-nitrosourea (ENU)-induced mutation called elektra. Homozygotes showed enhanced susceptibility to bacterial and viral infections, and diminished numbers of T cells and inflammatory monocytes that failed to proliferate upon infection and died via the intrinsic apoptotic pathway in response to diverse proliferative stimuli. Elektra mice exhibited an increased proportion of T cells poised to replicate DNA and their T cells expressed a subset of activation markers, suggestive of a semi-activated state. The elektra phenotype was positionally ascribed to a mutation in the gene encoding Schlafen-2 (Slfn2). Our findings reveal a physiological role for Slfn2 in the defense against pathogens through regulation of quiescence in T cells and monocytes.
Lymphocytic choriomeningitis virus (LCMV) is a common infection of rodents first identified over eighty years ago in St. Louis, MO, U.S.A. It is best known for its application in immunological studies. The history of LCMV closely correlates with the development of modern immunology. With the use of LCMV as a model pathogen several key concepts have emerged: Major Histocompatibility Complex (MHC) restriction, T cell memory, persistent infections, T cell exhaustion and the key role of immune pathology in disease. Given the phenomenal infrastructure within this field (e.g., defined immunodominant and subdominant epitopes to all T cell receptor specificities as well as the cognate tetramers for enumeration in vivo) the study of LCMV remains an active and productive platform for biological research across the globe to this day. Here we present a historical primer that highlights several breakthroughs since the discovery of LCMV. Next, we highlight current research in the field and conclude with our predictions for future directions in the remarkable field of LCMV research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.