The two-dimensional, incompressible flow over a backward-facing step is considered for a systematic variation of the geometry covering expansion ratios (step to outlet height) from 0.25 to 0.975. A global temporal linear stability analysis shows that the basic flow becomes unstable to different three-dimensional modes depending on the expansion ratio. All critical modes are essentially confined to the region behind the step extending downstream up to the reattachment point of the separated eddy. An energy-transfer analysis is applied to understand the physical nature of the instabilities. If scaled appropriately, the critical Reynolds number approaches a finite asymptotic value for very large step heights. In that case centrifugal forces destabilize the flow with respect to an oscillatory critical mode. For moderately large expansion ratios an elliptical instability mechanism is identified. If the step height is further decreased the critical mode changes from oscillatory to stationary. In addition to the elliptical mechanism, the strong shear in the layer emanating from the sharp corner of the step supports the amplification process of the critical mode. For very small step heights the basic state becomes unstable due to the lift-up mechanism, which feeds back on itself via the recirculating eddy behind the step, resulting in a steady critical mode comprising pronounced slow and fast streaks.
The global, temporal stability of the two-dimensional, incompressible flow over a forward-facing step in a plane channel is investigated numerically. The geometry is varied systematically covering constriction ratios (step-to-inlet height) from 0.23 to 0.965. A three-dimensional linear stability analysis shows that the stability boundary is a smooth continuous function of the constriction ratio. If the critical Reynolds and wavenumbers are scaled appropriately, they approach a linear asymptotic behaviour for large step heights. The critical mode is found to be stationary and confined to the region of separated flow downstream of the step for all constriction ratios. An energy-transfer analysis reveals that the basic flow becomes unstable due to a combined effect involving lift-up and flow deceleration, leading to a critical mode exhibiting steady streaks. Moreover, the receptivity of the flow to initial as well as to structural perturbations is studied by means of an adjoint analysis.
The two-dimensional, incompressible flow in a plane sudden expansion is investigated numerically for a systematic variation of the geometry, covering expansion ratios (steps-to-outlet heights) from 0.25 to 0.95. By means of a three-dimensional linear stability analysis global temporal modes are scrutinized. In a symmetric expansion the primary bifurcation is stationary and two-dimensional, breaking the mirror symmetry with respect to the mid-plane. The secondary asymmetric flow experiences a secondary instability to different three-dimensional modes, depending on the expansion ratio. For a moderately asymmetric expansion only one of the two secondary flows (the connected branch) is realized at low Reynolds numbers. Since the perturbed secondary flow does not deviate much from the symmetric secondary flow, both secondary stability boundaries are very close to each other. For very small and very large expansion ratios an asymptotic behaviour is found for suitably scaled critical Reynolds numbers and wavenumbers. Representative instabilities are analysed in detail using an a posteriori energy transfer analysis to reveal the physical nature of the instabilities. Depending on the geometry, pure centrifugal and elliptical amplification processes are identified. We also find that the basic flow can become unstable due to the effects of flow deceleration, streamline convergence and high shear stresses, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.