Participatory design (PD) as a module development tool offers significant potential to enhance experiential learning courses such as laboratory modules. Involvement of students and other stakeholders results in pre-delivery feedback on module design, implementation strategy, and teaching material. In this study, PD was employed for design and development of a systems control and reaction engineering laboratory project. The nature of stakeholder interaction at various levels was analysed and specific examples for how such an approach improved the development process is presented. Current students provided feedback on how the module was perceived by their peers and participated in developing solutions to make the learning process more inclusive. Senior students and graduate teaching assistants (GTAs) were able to contribute at a higher technical design level. Students were intellectually stimulated by the module design, enhancing the overall teaching and learning process.
The photoautotrophic production of excreted biofuels from genetically engineered cyanobacteria and microalgae represents a new and promising alternative to conventional algal fuel technologies. N-butanol is a particularly promising fuel product, as it can be directly used in petroleum engines, and has been successfully expressed in species of Synechococcus elongates 7942 and Synechocystis sp. PCC 6803. However, the high energy requirements of recovering butanol from dilute mixtures can easily outweigh the energy content of the fuel and must be carefully assessed and optimized. Consequently, the recovery of butanol was modelled using four of the most promising butanol separation technologies (distillation, gas stripping, pervaporation and ionic liquid extraction) to calculate the minimum butanol culture concentrations required to render the process energy-positive. With a breakeven concentration of only 3.7 g L-1 , ionic liquid extraction proved much more efficient than the distillation base-case scenario (9.3 g L-1), whilst neither pervaporation (10.3 g L-1) nor gas stripping (16.9 g L-1) could compete on an energy basis with distillation. Despite this, due to the high costs of the ionic liquid solvent, the lowest capital costs are obtained for distillation (pilot plant scale, butanol culture concentrations of 10 g L-1), whilst pervaporation carries the lowest utility costs, as a result of its low electrical energy demand. Although currently achieved maximum n-butanol culture concentrations are significantly below the calculated break-even values for all four technologies, the present work provides an important threshold for future strain development. Moreover, the recovery of side-products from purged biomass could help to reduce the costs associated with biofuel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.