We develop a continuous time random walk (CTRW) approach for the evolution of Lagrangian velocities in steady heterogeneous flows based on a stochastic relaxation process for the streamwise particle velocities. This approach describes persistence of velocities over a characteristic spatial scale, unlike classical random walk methods, which model persistence over a characteristic time scale. We first establish the relation between Eulerian and Lagrangian velocities for both equidistant and isochrone sampling along streamlines, under transient and stationary conditions. Based on this, we develop a space continuous CTRW approach for the spatial and temporal dynamics of Lagrangian velocities. While classical CTRW formulations have non-stationary Lagrangian velocity statistics, the proposed approach quantifies the evolution of the Lagrangian velocity statistics under both stationary and non-stationary conditions. We provide explicit expressions for the Lagrangian velocity statistics, and determine the behaviors of the mean particle velocity, velocity covariance and particle dispersion. We find strong Lagrangian correlation and anomalous dispersion for velocity distributions which are tailed toward low velocities as well as marked differences depending on the initial conditions. The developed CTRW approach predicts the Lagrangian particle dynamics from an arbitrary initial condition based on the Eulerian velocity distribution and a characteristic correlation scale.
We show that chaotic advection is inherent to flow through all types of porous media, from granular and packed media to fractured and open networks. The basic topological complexity inherent to all porous media gives rise to chaotic flow dynamics under steady flow conditions, where fluid deformation local to stagnation points imparts a 3D fluid mechanical analog of the baker's map. The ubiquitous nature of chaotic advection has significant implications for the description of transport, mixing, chemical reaction and biological activity in porous media.
Fluid flow in porous media drives the transport, mixing, and reaction of molecules, particles, and microorganisms across a wide spectrum of natural and industrial processes. Current macroscopic models that average pore-scale fluctuations into an effective dispersion coefficient have shown significant limitations in the prediction of many important chemical and biological processes. Yet, it is unclear how three-dimensional flow in porous structures govern the microscale chemical gradients controlling these processes. Here, we obtain high-resolution experimental images of microscale mixing patterns in three-dimensional porous media and uncover an unexpected and general mixing mechanism that strongly enhances concentration gradients at pore-scale. Our experiments reveal that systematic stretching and folding of fluid elements are produced in the pore space by grain contacts, through a mechanism that leads to efficient microscale chaotic mixing. These insights form the basis for a general kinematic model linking chaotic-mixing rates in the fluid phase to the generic structural properties of granular matter. The model successfully predicts the resulting enhancement of pore-scale chemical gradients, which appear to be orders of magnitude larger than predicted by dispersive approaches. These findings offer perspectives for predicting and controlling the vast diversity of reactive transport processes in natural and synthetic porous materials, beyond the current dispersion paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.