The role of the atmospheric boundary layer (ABL) in the atmosphere-climate system is the exchange of heat, mass, and momentum between "the earth's surface" and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange (EAE). This understanding is rooted in the (implicit) assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF) surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative) and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (sub)meso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag (GWD) parameterizations take into account the momentum transport due to gravity waves in large-scale models). In this contribution we summarize the available evidence of the contribution of (sub)meso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective-so as to identify possible limitations and areas of necessary future research.
The breakup of a nocturnal temperature inversion during daytime is studied in an idealized valley by means of high-resolution numerical simulations. Vertical fluxes of heat and mass are strongly reduced as long as an inversion is present; hence it is important to understand the mechanisms leading to its removal. In this study breakup times are determined as a function of the radiative forcing. Further, the effect of the nocturnal inversion on the vertical exchange of heat and mass is quantified. The Weather Research and Forecasting Model is applied to an idealized quasi-two-dimensional valley. The net shortwave radiation is specified by a sine function with amplitudes between 150 and 850 W m−2 during daytime and at zero during the night. The valley inversion is eroded within 5 h for the strongest forcing. A minimal amplitude of 450 W m−2 is required to reach the breakup, in which case the inversion is removed after 11 h. Depending on the forcing amplitude, between 10% and 57% of the energy provided by the surface sensible heat flux is exported out of the valley during the whole day. The ratio of exported energy to provided energy is approximately 1.6 times as large after the inversion is removed as before. More than 5 times the valley air mass is turned over in 12 h for the strongest forcing, whereas the mass is turned over only 1.3 times for 400 W m−2.
Abstract. The transport and mixing of pollution during the daytime evolution of a valley boundary layer is studied in an idealized way. The goal is to quantify horizontal and vertical tracer mass fluxes between four different valley volumes: the convective boundary layer, the slope wind layer, the stable core, and the atmosphere above the valley. For this purpose, large eddy simulations (LES) are conducted with the Weather Research and Forecasting (WRF) model for a quasitwo-dimensional valley. The valley geometry consists of two slopes with constant slope angle and is homogeneous in the along-valley direction. The surface sensible heat flux is horizontally homogeneous and prescribed by a sine function. The initial sounding is characterized by an atmosphere at rest and a constant Brunt-Väisälä frequency. Various experiments are conducted for different combinations of surface heating amplitudes and initial stability conditions. A passive tracer is released with an arbitrary but constant rate at the valley floor and resulting tracer mass fluxes are evaluated between the aforementioned volumes.As a result of the surface heating, a convective boundary layer is established in the lower part of the valley with a stable layer on top -the so-called stable core. The height of the slope wind layer, as well as the wind speed within, decreases with height due to the vertically increasing stability. Hence, the mass flux within the slope wind layer decreases with height as well. Due to mass continuity, this along-slope mass flux convergence leads to a partial redirection of the flow from the slope wind layer towards the valley centre and the formation of a horizontal intrusion above the convective boundary layer. This intrusion is associated with a transport of tracer mass from the slope wind layer towards the valley centre. A strong static stability and/or weak forcing lead to large tracer mass fluxes associated with this phenomenon.The total export of tracer mass out of the valley atmosphere increases with decreasing stability and increasing forcing. The effects of initial stability and forcing can be combined to a single parameter, the breakup parameter B. An analytical function is presented that describes the exponential decrease of the percentage of exported tracer mass with increasing B. This study is limited by the idealization of the terrain shape, stratification, and forcing, but quantifies transport processes for a large range of forcing amplitudes and atmospheric stability.
The convective export of heat from different types of idealized valleys for fair-weather daytime conditions is studied with the Weather Research and Forecasting (WRF) Model. The goal is to test the hypothesis that the total export of heat over the course of the day depends on a so-called breakup parameter B. The breakup parameter is the ratio between the energy required to neutralize the initially stably stratified valley atmosphere and the total energy provided by the surface sensible heat flux. To achieve this goal, simulations with different surface heating, initial stability, and terrain geometry are performed. The fraction of the sensible heat provided at the surface that is exported at crest height over the course of the day depends exponentially on B. The effects of variations of the valley width, crest height, forcing amplitude, and initial stratification on the total export of heat can be described by this function. The complete neutralization of the stratification in the valley is never reached if B exceeds a critical value of about 0.65 for an initially constant stratification. For a valley geometry with linear slopes and sharp crests, up to 60% of the provided heat is exported for the strongest forcing and the weakest stability (i.e., B ≈ 0.1), whereas less than 5% is exported for B > 0.65. The minimum heat export for larger B is higher for rounded crests (10%) and for a deep residual layer that extends to above crest height (17%).
The current study describes analyses of the WINSENT wind energy test site located in complex terrain in Southern Germany by highly resolved numerical simulations. The resolved atmospheric turbulence is simulated with Delayed Detached Eddy Simulations by the flow solver FLOWer without consideration of the research wind turbines. The mean inflow and wind direction of the analysed time period is provided by precursor simulations of project partners. The simulation model chain consists of three codes with different time scales and resolutions. The model chain provides a data transfer from mesoscale WRF simulations to OpenFOAM. As a next step OpenFOAM provides inflow data in the valley of the terrain site for the present FLOWer simulations, the code with the highest resolution in space and time. The mean velocity field provided by OpenFOAM is superimposed with fluctuations that are based on measurements to obtain the small turbulent scales within the FLOWer simulations, which the previous tools of the model chain can not resolve. Comparisons with the two already installed met masts clarify that the current FLOWer simulations provide an adequate agreement with measured data. The results are verified with the application of a second simulation, in which a homogeneous velocity profile is superimposed with turbulence. Thus, comparisons with measured data showed that the benefit of using the inflow data of this model chain is especially evident near the ground.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.