3-Cyano-1-naphthalenecarboxylic acid is an intermediate required for manufacture of tachykinin receptor antagonists. The 1,3-disubstitution pattern on the naphthalene skeleton complicates the synthesis of this cyano acid. Previous literature-based chemistry is unattractive for large-scale manufacture due to stoichiometric use of mercury salts, low yield, and other operational difficulties. An attractive new route has been developed by establishing the 1,3-substitution on the carbon atoms destined for only one-half of the naphthalene 2-ring system, via 3-bromocoumalate, and then building up the rest of the naphthalene ring system by Diels-Alder addition of 3-bromocoumalate to in situ-generated benzyne. The resulting 4-bromo-2-naphthoate was converted to the required cyanoacid by transformation of ester to nitrile followed by carbonylation of the bromo substituent. The new route has been scaled up successfully and offers significant advantages over previous literature chemistry in terms of improved process environmental implications, improved yield, lower cost, and improved robustness and ease of operation at larger scales of operation.
Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood–brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH’s value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.