A new method for identifying a leaking pipe within a pressurized water distribution system is presented. This novel approach utilizes transient modeling to analyze water networks. Urban water supply networks are important infrastructure that ensures the daily water consumption of urban residents and industrial sites. The aging and deterioration of drinking water mains is the cause of frequent burst pipes, thus making the detection and localization of these bursts a top priority for water distribution companies. Here we describe a novel method based on transient modeling of the water network and produces high-resolution pressure response under various scenarios. Analyzing this data allows the prediction of the leaking pipe. The transient pressure data is classified as leaking pipes or no leak clusters using the K-nearest neighbors (K-NN) algorithm. The transient model requires a massive computation effort to simulate the network’s performance. The classification model presented good performance with an overall accuracy of 0.9 for the basic scenarios. The lowest accuracy was obtained for interpolated scenarios the model had not been trained on; in this case, the accuracy was 0.52.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.