To get an insight into the transition from mononuclear Hodgkin cells (H cells) to diagnostic multinuclear Reed-Sternberg cells (RS cells), we performed an analysis of the three-dimensional (3D) structure of the telomeres in the nuclei of the Hodgkin cell lines HDLM-2, L-428, L-1236 and lymph node biopsies of patients with Hodgkin's disease. Cellular localization of key proteins of the telomere-localized shelterin complex, the mitotic spindle and double-stranded DNA breaks was also analyzed. RS cells show significantly shorter and significantly fewer telomeres in relation to the total nuclear volume when compared with H cells; in particular, telomere-poor 'ghost' nuclei are often adjacent to one or two nuclei displaying huge telomeric aggregates. Shelterin proteins are mainly cytoplasmic in both H and RS cells, whereas double-stranded DNA breaks accumulate in the nuclei of RS cells. In RS cells, multipolar spindles prevent proper chromosome segregation. In conclusion, a process of nuclear disorganization seems to initiate in H cells and further progresses when the cells turn into RS cells and become end-stage tumor cells, unable to divide further because of telomere loss, shortening and aggregate formation, extensive DNA damage and aberrant mitotic spindles that may no longer sustain chromosome segregation. Our findings allow a mechanistic 3D understanding of the transition of H to RS cells.
Key Points• LMP1 expression in post germinal center B cells results in downregulation of shelterin proteins, telomeric aggregates, and multinuclearity.• LMP1 targets TRF1, TRF2, and POT1 reversibly at the transcriptional/translational level, and TRF2 is essential to block multinuclearity.Hodgkin lymphoma (HL) and Burkitt lymphoma are both germinal center-derived B-cell lymphomas. To assess the consequences of permanent latent membrane protein 1 (LMP1) expression as observed in tumor cells of Epstein-Barr virus (EBV) -associated HL, we analyzed 3-dimensional (3D) telomere dynamics and measured the expression of shelterin proteins at the transcriptional and translational level and their topographic distribution in the EBV-negative Burkitt cell line BJAB stably transfected with an inducible LMP1 system. Stable LMP1 expression led to a highly significant increase of multinucleated cells, nuclear volume, and 3D telomeric aggregates when compared with the LMP1-suppressed BJAB controls. Most importantly, LMP1 induced a significant downregulation of the shelterin components TRF1, TRF2, and POT1 at the transcriptional and translational level, and this downregulation was reversed after resuppression of LMP1.In addition, as revealed by spectral karyotyping, LMP1 induced "outré" giant cells and hypoploid "ghost" cells. This LMP1-induced multinucleation was blocked upon LMP1-independent TRF2 expression. These results show that LMP1-dependent deregulation of telomere stability and nuclear organization via shelterin downregulation, in particular TRF2, favors chromosomal rearrangements. We speculate that telomeric aggregates and ongoing breakage-bridge-fusion cycles lead to disturbed cytokinesis and finally to multinuclearity, as observed in EBV-associated HL. (Blood. 2015;125(13):2101-2110
In classic Hodgkin lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear Reed-Sternberg (RS) cells are characterized by a distinct three-dimensional nuclear telomere organization with shortening of the telomere length and the formation of telomeric aggregates. We asked if the severity of these telomere changes correlates with the clinical behavior of the disease. We retrospectively evaluated three-dimensional telomere organization by quantitative fluorescent in situ hybridization (Q-FISH) of diagnostic biopsies from 16 patients who were good responders and compared them with 16 diagnostic biopsies of 10 patients with refractory or relapsing HL (eight initial biopsies, four confirming progressions, and four confirming relapses). The H cells from patients with refractory/relapsing disease contained a significantly higher percentage of very small telomeres (P = .027) and telomere aggregates (P = .032) compared with H cells of patients entering rapid remission. These differences were even more significant (P = .002 and P = .013, respectively) when comparing the eight initial diagnostic biopsies of refractory/relapsing HL with diagnostic biopsies of eight patients with ongoing long-lasting remission (mean of 47 months). This specific three-dimensional telomere Q-FISH signature identifies these highly aggressive mononuclear H cells at the first diagnostic biopsy and thus may offer a new molecular marker to optimize initial treatment.
In Epstein-Barr virus (EBV) negative Hodgkin's cell lines and classical EBV-negative Hodgkin's lymphoma (HL), ReedSternberg cells (RS cells) represent end-stage tumor cells, in which further nuclear division becomes impossible because of sustained telomere loss, shortening and aggregation. However, the three-dimensional (3D) telomere organization in latent membrane protein 1 (LMP1)-expressing RS cells of EBV-associated HL is not known. We performed a 3D telomere analysis after quantitative fluorescent in situ hybridization on 5 mm tissue sections on two LMP1-expressing HL cases and showed highly significant telomere shortening (Po0.0001) and formation of telomere aggregates in RS cells (Po0.0001), when compared with the mononuclear precursor Hodgkin cells (H cells). Telomere-poor or telomere-free 'ghost' nuclei were a regular finding in these RS cells. These nuclei and their telomere content strongly contrasted with the corona of surrounding lymphocytes showing numerous midsized telomere hybridization signals. Both H cells and RS cells of two EBV-negative HL cases analyzed in parallel showed 3D telomere patterns identical to those of LMP1-expressing cases. As a major advance, our 3D nuclear imaging approach allows the visualization of hitherto unknown profound changes in the 3D nuclear telomere organization associated with the transition from LMP1-positive H cells to LMP1-positive RS cells. We conclude that RS cells irrespective of LMP1 expression are end-stage tumor cells in which the extent of their inability to divide further is proportional to the increase of very short telomeres, telomere loss, aggregate formation and the generation of 'ghost' nuclei. Mononuclear H cells are the precursors of multinuclear RS cells, 6-9 and endomitotic multinucleation is associated with disturbed cytokinesis and jumping translocations 10,11 pointing to a severe telomere dysfunction. 12,13 Telomeres are the nucleoprotein complexes at the ends of chromosomes in which a number of specific proteins, either binding telomere proteins directly or a protein complex, termed 'shelterin,' is directly associated with telomeric DNA. [14][15][16] Profound changes in the three-dimensional (3D) nuclear organization of telomeres are the hallmark of the transition from mononuclear H cells to multinuclear RS cells in EBVnegative Hodgkin cell lines and in classical EBV-negative HL. We recently showed that EBV-negative RS cells represent end-stage tumor cells, in which further nuclear division becomes impossible because of sustained telomere loss, shortening and aggregation. 1 However, nothing is known about the 3D telomere organization in LMP1-expressing H and RS cells of EBV-associated Hodgkin's disease (HD). In this study, we document 3D telomere dynamics in LMP1-expressing H and RS cells and show conformity with those observed in EBV-negative HD analyzed in parallel.
Multiple myeloma (MM) is preceded by monoclonal gammopathy of undetermined significance (MGUS). Up to date, it is difficult to predict an individual's time to disease progression and the treatment response. To examine whether the nuclear telomeric architecture will unravel some of these questions, we carried out. Three-dimensional (3D) telomere analysis on samples from patients diagnosed with MGUS and MM, as well as from patients who went into relapse. Telomere signal intensity, number of telomere aggregates, nuclear volume, and the overall nuclear telomere distribution (a/c ratio) were analyzed. The telomeric profiles allowed for the differentiation of the disease stages. The telomeric profiles of myeloma cells obtained from blood and bone marrow aspirates were identical. Based on this study, we discuss the use of 3D telomere profiling as a potential future tool for risk stratification and personalized treatment decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.