The growing shortage of available organs is a major problem in transplantology. Thus, new and alternative sources of organs need to be found. One promising solution could be xenotransplantation, i.e., the use of animal cells, tissues and organs. The domestic pig is the optimum donor for such transplants. However, xenogeneic transplantation from pigs to humans involves high immune incompatibility and a complex rejection process. The rapid development of genetic engineering techniques enables genome modifications in pigs that reduce the cross-species immune barrier.
CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) adaptive immune systems constitute a bacterial defence against invading nucleic acids derived from bacteriophages or plasmids. This prokaryotic system was adapted in molecular biology and became one of the most powerful and versatile platforms for genome engineering. CRISPR/Cas9 is a simple and rapid tool which enables the efficient modification of endogenous genes in various species and cell types. Moreover, a modified version of the CRISPR/Cas9 system with transcriptional repressors or activators allows robust transcription repression or activation of target genes. The simplicity of CRISPR/Cas9 has resulted in the widespread use of this technology in many fields, including basic research, biotechnology and biomedicine.
The current research was conducted to explore the in vitro developmental outcome and cytological/molecular quality of porcine nuclear-transferred (NT) embryos reconstituted with adult bone marrow-derived mesenchymal stem cells (ABM-MSCs) that were epigenetically transformed by treatment with nonspecific inhibitor of histone deacetylases, known as trichostatin A (TSA). The cytological quality of cloned blastocysts was assessed by estimation of the total cells number (TCN) and apoptotic index. Their molecular quality was evaluated by real-time PCR-mediated quantification of gene transcripts for pluripotency- and multipotent stemness-related markers (Oct4, Nanog, and Nestin). The morula and blastocyst formation rates of NT embryos derived from ABM-MSCs undergoing TSA treatment were significantly higher than in the TSA-unexposed group. Moreover, the NT blastocysts generated using TSA-treated ABM-MSCs exhibited significantly higher TCN and increased pluripotency extent measured with relative abundance of Oct4 and Nanog mRNAs as compared to the TSA-untreated group. Altogether, the improvements in morula/blastocyst yields and quality of cloned pig embryos seem to arise from enhanced abilities for promotion of correct epigenetic reprogramming of TSA-exposed ABM-MSC nuclei in a cytoplasm of reconstructed oocytes. To our knowledge, we are the first to report the successful production of mammalian high-quality NT blastocysts using TSA-dependent epigenomic modulation of ABM-MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.