We prove the global-in-time existence of nonnegative weak solutions to a class of fourth order partial differential equations on a convex bounded domain in arbitrary spatial dimensions. Our proof relies on the formal gradient flow structure of the equation with respect to the L 2 -Wasserstein distance on the space of probability measures. We construct a weak solution by approximation via the time-discrete minimizing movement scheme; necessary compactness estimates are derived by entropy-dissipation methods. Our theory essentially comprises the thin film and Derrida-Lebowitz-Speer-Spohn equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.