No abstract
Bidimensionality theory was introduced by [E. D. Demaine et al., J. ACM, 52 (2005), pp. 866--893] as a tool to obtain subexponential time parameterized algorithms on H-minor-free graphs. In [E. D. Demaine and M. Hajiaghayi, Bidimensionality: New connections between FPT algorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, 2005, pp. 590--601] this theory was extended in order to obtain polynomial time approximation schemes (PTASs) for bidimensional problems. In this work, we establish a third meta-algorithmic direction for bidimensionality theory by relating it to the existence of linear kernels for parameterized problems. In particular, we prove that every minor (resp., contraction) bidimensional problem that satisfies a separation property and is expressible in Countable Monadic Second Order Logic (CMSO) admits a linear kernel for classes of graphs that exclude a fixed graph (resp., an apex graph) H as a minor. Our results imply that a multitude of bidimensional problems admit linear kernels on the corresponding graph classes. For most of these problems no polynomial kernels on H-minor-free graphs were known prior to our work.
No abstract
Let F be a finite set of graphs. In the F-Deletion problem, we are given an n-vertex graph G and an integer k as input, and asked whether at most k vertices can be deleted from G such that the resulting graph does not contain a graph from F as a minor. FDeletion is a generic problem and by selecting different sets of forbidden minors F, one can obtain various fundamental problems such as Vertex Cover, Feedback Vertex Set or Treewidth η-Deletion.In this paper we obtain a number of generic algorithmic results about F-Deletion, when F contains at least one planar graph. The highlights of our work are• A constant factor approximation algorithm for the optimization version of F-Deletion;• A linear time and single exponential parameterized algorithm, that is, an algorithm running in time O(2 O(k) n), for the parameterized version of F-Deletion where all graphs in F are connected;• A polynomial kernel for parameterized F-Deletion.These algorithms unify, generalize, and improve a multitude of results in the literature. Our main results have several direct applications, but also the methods we develop on the way have applicability beyond the scope of this paper. Our results -constant factor approximation, polynomial kernelization and FPT algorithms -are stringed together by a common theme of polynomial time preprocessing.
In a parameterized problem, every instance I comes with a positive integer k. The problem is said to admit a polynomial kernel if, in polynomial time, one can reduce the size of the instance I to a polynomial in k, while preserving the answer. In this work we give two meta-theorems on kernelzation. The first theorem says that all problems expressible in Counting Monadic Second Order Logic and satisfying a coverability property admit a polynomial kernel on graphs of bounded genus. Our second result is that all problems that have finite integer index and satisfy a weaker coverability property admit a linear kernel on graphs of bounded genus. These theorems unify and extend all previously known kernelization results for planar graph problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.