CD5L (CD5 molecule-like) is a secreted glycoprotein that controls key mechanisms in inflammatory responses, with involvement in processes such as infection, atherosclerosis, and cancer. In macrophages, CD5L promotes an anti-inflammatory cytokine profile in response to TLR activation. In the present study, we questioned whether CD5L is able to influence human macrophage plasticity, and drive its polarization toward any specific phenotype. We compared CD5L-induced phenotypic and functional changes to those caused by IFN/LPS, IL4, and IL10 in human monocytes. Phenotypic markers were quantified by RT-qPCR and flow cytometry, and a mathematical algorithm was built for their analysis. Moreover, we compared ROS production, phagocytic capacity, and inflammatory responses to LPS. CD5L drove cells toward a polarization similar to that induced by IL10. Furthermore, IL10- and CD5L-treated macrophages showed increased LC3-II content and colocalization with acidic compartments, thereby pointing to the enhancement of autophagy-dependent processes. Accordingly, siRNA targeting ATG7 in THP1 cells blocked CD5L-induced CD163 and Mer tyrosine kinase mRNA and efferocytosis. In these cells, gene expression profiling and validation indicated the upregulation of the transcription factor ID3 by CD5L through ATG7. In agreement, ID3 silencing reversed polarization by CD5L. Our data point to a significant contribution of CD5L-mediated autophagy to the induction of ID3 and provide the first evidence that CD5L drives macrophage polarization.
Micro-organisms play a central role in every ecosystem and in the global biomass cycle. They are strongly involved in many fields of human interest, from medicine to the food industry and waste control. Nevertheless, most micro-organisms remain almost unknown, and nearly 99% of them have not yet been successfully cultured in vitro. Therefore, new approaches and new tools must be developed in order to understand the collective behaviour of microbial communities in any natural or artificial setting. In particular, theoretical and practical methodologies to deal with such systems at a mesoscopic level of description (covering the range from 100 to 10(8) cells) are required. Individual-based modelling (IBM) has become a widely used tool for describing complex systems made up of autonomous entities, such as ecosystems and social networks. Individual-based models (IBMs) provide some advantages over the traditional whole-population models: (a) they are bottom-up approaches, so they describe the behaviour of a system as a whole by establishing procedural rules for the individuals and for their interactions, and thus allow more realistic assumptions for the model of the individuals than population models do; (b) they permit the introduction of randomness and individual variability, so they can reproduce the diversity found in real systems; and (c) they can account for individual adaptive behaviour to their environmental conditions, so the evolution of the whole system arises from the dynamics that govern individuals in their pursuit of optimal fitness. However, they also present some drawbacks: they lack the clarity of continuous models and may easily become rambling, which makes them difficult to analyse and communicate. All in all, IBMs supply a holistic description of microbial systems and their emerging properties. They are specifically appropriate to deal with microbial communities in non-steady states, and spatially explicit IBMs are particularly appropriate to study laboratory and natural microbiological systems with spatial heterogeneity. In this paper, we review IBM methodology applied to microbiology. We also present some results obtained from the application of Individual Discrete Simulations, an IBM of ours, to the study of bacterial communities, yeast cultures and Plasmodium falciparum-infected erythrocytes in vitro cultures of Plasmodium falciparum-infected erythrocytes.
The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of infection toward disease in human lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.