Rationale:The respiratory tract is constantly exposed to airborne microorganisms. Nevertheless, normal airways remain sterile without recruiting phagocytes. This innate immune activity has been attributed to mucociliary clearance and antimicrobial polypeptides of airway surface liquid. Defective airway immunity characterizes cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator, a chloride channel. The pathophysiology of defective immunity in CF remains to be elucidated. Objective: We investigated the ability of non-CF and CF airway epithelia to kill bacteria through the generation of reactive oxygen species (ROS). Methods: ROS production and ROS-mediated bactericidal activity were determined on the apical surfaces of human and rat airway epithelia and on cow tracheal explants. Measurements and Main Results: Dual oxidase enzyme of airway epithelial cells generated sufficient H 2 O 2 to support production of bactericidal hypothiocyanite (OSCN ؊ ) in the presence of airway surface liquid components lactoperoxidase and thiocyanate (SCN ؊ ). This OSCN ؊ formation eliminated Staphylococcus aureus and Pseudomonas aeruginosa on airway mucosal surfaces, whereas it was nontoxic to the host. In contrast to normal epithelia, CF epithelia failed to secrete SCN ؊ , thereby rendering the oxidative antimicrobial system inactive. Conclusions: These data indicate a novel innate defense mechanism of airways that kills bacteria via ROS and suggest a new cellular and molecular basis for defective airway immunity in CF.
Recent reports postulate that the dual oxidase (DUOX) proteins function as part of a multicomponent oxidative pathway used by the respiratory mucosa to kill bacteria. The other components include epithelial ion transporters, which mediate the secretion of the oxidizable anion thiocyanate (SCN(-)) into airway surface liquid, and lactoperoxidase (LPO), which catalyzes the H(2)O(2)-dependent oxidation of the pseudohalide SCN(-) to yield the antimicrobial molecule hypothiocyanite (OSCN(-)). We hypothesized that this oxidative host defense system is also active against respiratory viruses. We evaluated the activity of oxidized LPO substrates against encapsidated and enveloped viruses. When tested for antiviral properties, the LPO-dependent production of OSCN(-) did not inactivate adenovirus or respiratory syncytial virus (RSV). However, substituting SCN(-) with the alternative LPO substrate iodide (I(-)) resulted in a marked reduction of both adenovirus transduction and RSV titer. Importantly, well-differentiated primary airway epithelia generated sufficient H(2)O(2) to inactivate adenovirus or RSV when LPO and I(-) were supplied. The administration of a single dose of 130 mg of oral potassium iodide to human subjects increased serum I(-) concentrations, and resulted in the accumulation of I(-) in upper airway secretions. These results suggest that the LPO/I(-)/H(2)O(2) system can contribute to airway antiviral defenses. Furthermore, the delivery of I(-) to the airway mucosa may augment innate antiviral immunity.
A recently discovered enzyme system produces antibacterial hypothiocyanite (OSCN − ) in the airway lumen by oxidizing the secreted precursor thiocyanate (SCN − ). Airway epithelial cultures have been shown to secrete SCN − in a CFTR-dependent manner. Thus, reduced SCN − availability in the airway might contribute to the pathogenesis of cystic fibrosis (CF), a disease caused by mutations in the CFTR gene and characterized by an airway host defense defect. We tested this hypothesis by analyzing the SCN − concentration in the nasal airway surface liquid (ASL) of CF patients and non-CF subjects, and in the tracheobronchial ASL of CFTR-ΔF508 homozygous pigs and control littermates. In the nasal ASL, the SCN − concentration was ~30-fold higher than in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.