Highlights d scRNA-seq analyses highlight conserved myeloid subsets in human and murine CRC d Two distinct TAM subsets show inflammatory and angiogenic signatures, respectively d Two distinct TAM subsets show differential sensitivity to CSF1R blockade d Anti-CD40 activates specific cDC1s and expands Th1-like and CD8 + memory T cells
Objective A hallmark of rheumatoid arthritis (RA) is the production of autoantibodies, including anti-citrullinated protein antibodies (ACPAs). Nevertheless, the specific targets of these autoantibodies remain incompletely defined. During an immune response, B cells specific for the inciting antigen(s) are activated and differentiate into “plasmablasts”, which are released into the blood. In this study we sequence the plasmablast antibody repertoire to define the targets of the active immune response in RA. Methods We developed a novel DNA barcoding method to sequence the cognate heavy- and light-chain pairs of antibodies expressed by individual blood plasmablasts in RA. The method uses a universal 5’ adapter that enables full-length sequencing of the antibodies’ variable regions and recombinant expression of the paired antibody chains. The sequence datasets were bioinformatically analyzed to generate phylogenetic trees that identify clonal families of antibodies sharing heavy- and light-chain VJ sequences. Representative antibodies were expressed, and their binding properties characterized using CCP2 ELISA and antigen microarrays. Results We used our sequencing method to generate phylogenetic trees representing the antibody repertoires of peripheral blood plasmablasts of 4 individuals with anti-CCP+ RA, and recombinantly expressed 14 antibodies that were either “singleton” antibodies or representative of clonal antibody families. CCP2 ELISA identified four ACPAs, and antigen microarray analysis identified ACPAs that differentially targeted epitopes on α-enolase, citrullinated fibrinogen, and citrullinated histone 2B. Conclusions Our data provide evidence that autoantibodies targeting α-enolase, citrullinated fibrinogen, and citrullinated histone 2B are produced by the ongoing activated B cell response in, and thus may contribute to the pathogenesis of, RA.
BackgroundLIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known.ResultsWe identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring.ConclusionsThe Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural territories in larval and juvenile polyp stages. This pattern is consistent with a possible role in patterning the Nematostella nervous system. We propose a scenario in which Lhx genes play a homologous role in neural patterning across eumetazoans.
Our findings suggest that ACPA+ and RF+ B cells are imprinted with distinct transcriptional programs, which suggests that these autoantibodies associated with increased inflammation in RA arise from 2 different molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.