A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system. The ex situ generation of CO was derived by a palladium catalyzed decarbonylation of tertiary acid chlorides using a catalyst originating from Pd(dba)(2) and P(tBu)(3). Preliminary studies using pivaloyl chloride as the CO-precursor provided an alternative approach for the aminocarbonylation of 2-pyridyl tosylate derivatives using only 1.5 equiv of CO. Further design of the acid chloride CO-precursor led to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [(13)C]CO. In combination with studies aimed toward application of CO as the limiting reagent, this method provided highly efficient palladium catalyzed aminocarbonylations with CO-incorporations up to 96%. The ex situ generated CO and the two-chamber system were tested in the synthesis of several compounds of pharmaceutical interest and all of them were labeled as their [(13)C]carbonyl counterparts in good to excellent yields based on limiting CO. Finally, palladium catalyzed decarbonylation at room temperature also allowed for a successful double carbonylation. This new protocol provides a facile and clean source of gaseous CO, which is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment for running high pressure reactions.
Chemical processes capable of reducing the high oxygen content of biomass-derived polyols are in demand in order to produce renewable substitutes for chemicals of fossil origin. Deoxydehydration (DODH) is an attractive reaction that in a single step transforms a vicinal diol into an alkene, but the reaction requires a homogeneous catalyst, a reductant, and a solvent, which are typically expensive, unsustainable, or inefficient. Herein, we present the use of molybdenum(VI)-based compounds, in particular the cheap and commercially available (NH 4 ) 6 Mo 7 O 24 •4H 2 O, as catalysts for the DODH of vicinal diols in isopropyl alcohol ( i PrOH), which serves as both the solvent and reductant. The reaction proceeds at 240−250 °C in a pressurized autoclave, and the alkene yield from simple aliphatic diols can be as high as 77%. The major byproducts are carbonyl compoundsformed by dehydration of the dioland the alcohols formed by transfer hydrogenation of the carbonyl compounds; the total yield of reduced species (i.e., alkene and alcohols) can be as high as 92%. The DODH of glycerol yields allyl alcohol, which undergoes subsequent Mo-catalyzed deoxygenation to propylene driven by the oxidation of i PrOH; a major byproduct is the homocoupled product 1,5-hexadiene. Further insight in this Mo-catalyzed deoxygenation is gained by an investigation of model compounds: The allylic alcohol 1-hexen-3-ol is deoxygenated to hexene isomers in a yield of 65%, while benzyl alcohol is deoxygenated to toluene in a yield of 93%. The DODH of erythritol yields 39% 2,5-dihydrofuran, while the DODH of the proposed intermediate 1,4-anhydroerythritol yields 75%. The mechanism of the DODH of 1,4-anhydroerythritol was investigated by means of density functional theory (DFT), and the rate-determining step (24.1 kcal/mol) was found to be reduction of a molybdenum(VI) diolate to a molybdenum(IV) diolate.
The commercially available (NH4 )6 Mo7 O24 and other molybdenum compounds are shown to be viable substitutes for the typically employed rhenium compounds in the catalytic deoxydehydration of aliphatic diols into the corresponding alkenes. The transformation, which represents a model system for the various hydroxyl groups found in biomass-derived carbohydrates, can be conducted in an inert solvent (dodecane), under solvent-free conditions, and in a solvent capable of dissolving biomass-derived polyols (1,5-pentanediol). The reaction is driven by the simultaneous oxidative deformylation of the diol resulting in an overall disproportionation of the substrate.
The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an Mo(VI) oxo complex, oxidative cleavage of the diol resulting in an Mo(IV) complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum-catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum-catalyzed biomass transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.