Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinson's diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition proceeded in a time-dependent manner by a covalent, irreversible mechanism, which was dependent upon MPO catalysis, consistent with mechanism-based inactivation. N1-Substituted-6-arylthiouracils exhibited low partition ratios and high selectivity for MPO over thyroid peroxidase and cytochrome P450 isoforms. N1-Substituted-6-arylthiouracils also demonstrated inhibition of MPO activity in lipopolysaccharide-stimulated human whole blood. Robust inhibition of plasma MPO activity was demonstrated with the lead compound 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999, 8) upon oral administration to lipopolysaccharide-treated cynomolgus monkeys. On the basis of its pharmacological and pharmacokinetic profile, PF-06282999 has been advanced to first-in-human pharmacokinetic and safety studies.
[reaction: see text] Simple bis(bromoethynyl)arenediynes are easily prepared by the desilylative halogenation of the corresponding trimethylsilyl derivatives. Cycloaromatization of these halogenated enediynes leads to the otherwise difficult to prepare 2,3-dibromoarenes in good yield. Alkynylation of the resulting haloaromatic compound regenerates the soluble enediyne system, homologated by one aromatic ring. This iterative methodology can be terminated by the cycloaromatization of the unsubstituted enediyne, providing the simple acene hydrocarbon.
On the basis of a more practical and scalable route to an iodothiophene, an efficient and reliable synthesis has been developed for three selective PI3K inhibitors. From this advanced intermediate, the three title compounds were each prepared in five additional steps. Key learnings also include: high throughput experimentation (HTE) screening toward a more robust Suzuki coupling, a more efficient triazole synthesis, and an acid/base cleanup developed to purify the final compounds. The final enabled synthesis required no column chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.