.NETinst.org, is a non-profit institution devoted to research on network industries, electronic commerce, telecommunications, the Internet, "virtual networks" comprised of computers that share the same technical standard or operating system, and on network issues in general. This paper examines the effect of recommender systems on the diversity of sales. Two anecdotal views exist about such effects. Some believe recommenders help consumers discover new products and thus increase sales diversity. Others believe recommenders only reinforce the popularity of already popular products. This paper seeks to reconcile these seemingly incompatible views. We explore the question in two ways. First, modeling recommender systems analytically allows us to explore their path dependent effects. Second, turning to simulation, we increase the realism of our results by combining choice models with actual implementations of recommender systems. Our main result is that some well known recommenders can lead to a reduction in sales diversity. Because common recommenders (e.g., collaborative filters) recommend products based on sales and ratings, they cannot recommend products with limited historical data, even if they would be rated favorably. In turn, these recommenders can create a rich-get-richer effect for popular products and vice-versa for unpopular ones. This bias toward popularity can prevent what may otherwise be better consumer-product matches. That diversity can decrease is surprising to consumers who express that recommendations have helped them discover new products. In line with this, we show it is possible for individual-level diversity to increase but aggregate diversity to decrease. Recommenders can push each person to new products, but they often push similar users toward the same products. We show how basic design choices affect the outcome, and thus managers can choose recommender designs that are more consistent with their sales goals and consumers' preferences. †
This paper examines the effect of recommender systems on the diversity of sales. Two anecdotal views exist about such effects. Some believe recommenders help consumers discover new products and thus increase sales diversity. Others believe recommenders only reinforce the popularity of already-popular products. This paper seeks to reconcile these seemingly incompatible views. We explore the question in two ways. First, modeling recommender systems analytically allows us to explore their path-dependent effects. Second, turning to simulation, we increase the realism of our results by combining choice models with actual implementations of recommender systems. We arrive at three main results. First, some well-known recommenders can lead to a reduction in sales diversity. Because common recommenders (e.g., collaborative filters) recommend products based on sales and ratings, they cannot recommend products with limited historical data, even if they would be rated favorably. In turn, these recommenders can create a rich-get-richer effect for popular products and vice versa for unpopular ones. This bias toward popularity can prevent what may otherwise be better consumer-product matches. That diversity can decrease is surprising to consumers who express that recommendations have helped them discover new products. In line with this, result two shows that it is possible for individual-level diversity to increase but aggregate diversity to decrease. Recommenders can push each person to new products, but they often push users toward the same products. Third, we show how basic design choices affect the outcome, and thus managers can choose recommender designs that are more consistent with their sales goals and consumers' preferences.IT policy and management, electronic commerce, application contexts/sectors, IT impacts on industry and market structure, marketing, advertising and media
Personalization is becoming ubiquitous on the World Wide Web. Such systems use statistical techniques to infer a customer's preferences and recommend content best suited to him (e.g., "Customers who liked this also liked…"). A debate has emerged as to whether personalization has drawbacks. By making the Web hyperspecific to our interests, does it fragment Internet users, reducing shared experiences and narrowing media consumption? We study whether personalization is in fact fragmenting the online population. Surprisingly, it does not appear to do so in our study. Personalization appears to be a tool that helps users widen their interests, which in turn creates commonality with others. This increase in commonality occurs for two reasons, which we term volume and product-mix effects. The volume effect is that consumers simply consume more after personalized recommendations, increasing the chance of having more items in common. The product-mix effect is that, conditional on volume, consumers buy a more similar mix of products after recommendations. AbstractPersonalization is becoming ubiquitous on the World Wide Web. Such systems use statistical techniques to infer a customer's preferences and recommend content best suited to him (e.g., "Customers who liked this also liked…"). A debate has emerged as to whether personalization has drawbacks. By making the web hyper-specific to our interests, does it fragment internet users, reducing shared experiences and narrowing media consumption? We study whether personalization is in fact fragmenting the online population. Surprisingly, it does not appear to do so in our study. Personalization appears to be a tool that helps users widen their interests, which in turn creates commonality with others. This increase in commonality occurs for two reasons, which we term volume and product mix effects. The volume effect is that consumers simply consume more after personalized recommendations, increasing the chance of having more items in common. The product mix effect is that, conditional on volume, consumers buy a more similar mix of products after recommendations.
This paper examines the effect of recommender systems on the diversity of sales. Two anecdotal views exist about such effects. Some believe recommenders help consumers discover new products and thus increase sales diversity. Others believe recommenders only reinforce the popularity of already popular products. This paper is a first attempt to reconcile these seemingly incompatible views. We explore the question in two ways. First, modeling recommender systems analytically allows us to explore their path dependent effects. Second, turning to simulation, we increase the realism of our results by combining choice models with actual implementations of recommender systems. We arrive at three main results. One, some common recommenders lead to a net reduction in average sales diversity. Two, there exists path dependence, and in individual instances the same recommender can either increase or decrease diversity. Three, we show how basic design choices affect the outcome.
Recommender systems are becoming integral to how consumers discover media. The value that recommenders offer is personalization. In environments with many product choices, recommenders personalize the experience to each user's taste. Popular applications include product recommendations at online retail sites and online newspapers' automatically selecting articles to display based on the current reader's interests. This ability to focus more closely on one's taste and filter all else out has spawned criticism that recommenders will fragment users. Critics say recommenders cause consumers to have less in common with one another and that the media should do more to increase exposure to a variety of content. Others, however, contend that recommenders do the opposite: they may homogenize users because they share information among those who would otherwise not communicate. These are opposing views, discussed in the literature for over fourteen years, for which there is not yet empirical evidence. We present an empirical study of recommender systems in the music industry. In contrast to concerns that users are becoming more fragmented, we find that in our setting users become more similar to one another in their purchases. This increase in similarity occurs for two reasons, which we term volume and taste effects. The volume effect is that consumers simply purchase more after recommendations, increasing the chance of having more purchases in common. The taste effect is that, conditional on volume, consumers buy a more similar mix of products after recommendations. When we view consumers as a similarity network, the network becomes denser and smaller (characterized by shorter inter-user distances) after recommendations are introduced. These findings suggest that for this setting, recommender systems are associated with an increase in commonality among users and that concerns of fragmentation may be misplaced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.