Today’s camera systems used for machine vision and scientific applications have intra-scene dynamic ranges up to 16 bit and therefore A/D converters with up to 16 bit resolution per pixel. Unfortunately, the linear amplification of electrons also forces a linear or even quadratic increase of the image noise variance with the signal. Based on a method published in 2016 (B. Jähne, M. Schwarzbauer, tm-Technisches Messen 83.1), this paper describes a more general nonlinear transformation which equalizes the combined effect of temporal noise and photo-response non-uniformity (PRNU) and/or temporal noise in the illumination system of an image sensor. With this generalisation it is possible to use the equalisation also for microscopic applications for which an example is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.