Sources and systems for far-infrared or terahertz (1 THz = 10(12) Hz) radiation have received extensive attention in recent years, with applications in sensing, imaging and spectroscopy. Terahertz radiation bridges the gap between the microwave and optical regimes, and offers significant scientific and technological potential in many fields. However, waveguiding in this intermediate spectral region still remains a challenge. Neither conventional metal waveguides for microwave radiation, nor dielectric fibres for visible and near-infrared radiation can be used to guide terahertz waves over a long distance, owing to the high loss from the finite conductivity of metals or the high absorption coefficient of dielectric materials in this spectral range. Furthermore, the extensive use of broadband pulses in the terahertz regime imposes an additional constraint of low dispersion, which is necessary for compatibility with spectroscopic applications. Here we show how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity. As an example of this new waveguiding structure, we demonstrate an endoscope for terahertz pulses.
Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.
We describe a terahertz imaging system that uses a single pixel detector in combination with a series of random masks to enable high-speed image acquisition. The image formation is based on the theory of compressed sensing, which permits the reconstruction of a N-by-N pixel image using much fewer than N 2 measurements. This approach eliminates the need for raster scanning of the object or the terahertz beam, while maintaining the high sensitivity of a single-element detector. We demonstrate the concept using a pulsed terahertz time-domain system and show the reconstruction of both amplitude and phase-contrast images. The idea of compressed sensing is quite general and could also be implemented with a continuous-wave terahertz source.
We review recent progress in the field of terahertz "T-ray" imaging. This relatively new imaging technique, based on terahertz time-domain spectroscopy, has the potential to be the first portable far-infrared imaging spectrometer. We give several examples which illustrate the possible applications of this technology, using both the amplitude and phase information contained in the THz waveforms. We describe the latest results in tomographic imaging, in which waveforms reflected from an object can be used to form a three-dimensional representation. Advanced signal processing tools are exploited for the purposes of extracting tomographic results, including spectroscopic information about each reflecting layer of a sample. We also describe the application of optical near-field techniques to the THz imaging system. Substantial improvements in the spatial resolution are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.