The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter-and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.
The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.
In the present study, we show that SARS-CoV-2 can infect palatine tonsils and adenoids in children without symptoms of COVID-19, with no history of recent upper airway infection. We studied 48 children undergoing tonsillectomy due to snoring/OSA or recurrent tonsillitis between October 2020 and September 2021. Briefly, nasal cytobrush (NC), nasal wash (NW) and tonsillar tissue fragments obtained at surgery were tested by RT-PCR, immunohistochemistry (IHC), flow cytometry and neutralization assay. We detected the presence of SARS-CoV-2 in at least one specimen tested in 25% of patients (20% in palatine tonsils and 16.27% in adenoids, 10.41% of NC and 6.25% of NW). Importantly, in 2 of the children there was evidence of laboratory-confirmed acute infection 2 and 5 months before surgery. IHC revealed the presence of SARS-CoV-2 nucleoprotein in epithelial surface and in lymphoid cells in both extrafollicular and follicular regions, in adenoids and palatine tonsils. Flow cytometry showed that CD20+B lymphocytes were the most infected phenotypes by SARS-CoV-2 NP, followed by CD4+ and CD8+ T lymphocytes, and CD14+ macrophages and dendritic cells. Additionally, IF indicated that SARS-CoV-2-infected tonsillar tissues had increased expression of ACE2 and TMPRSS2. NGS sequencing demonstrated the presence of different SARS CoV-2 variants in tonsils from different tissues. SARS-CoV-2 antigen detection was not restricted to tonsils, but was also detected in nasal cells from the olfactory region. In conclusion, palatine tonsils and adenoids are sites of prolonged infection by SARS-CoV-2 in children, even without COVID-19 symptoms.
Federated learning (FL) is a distributed training method for machine learning models (ML) that maintain data ownership on users. However, this distributed training approach can lead to variations in efficiency due to user behaviors or characteristics. For instance, mobility can hinder training by causing a client dropout when a device loses connection with other devices on the network. To address this issue, we propose a FL coordination algorithm, MoFeL, to ensure efficient training even in scenarios with mobility. Furthermore, MoFeL evaluates multiple networks with different central servers. To evaluate its effectiveness, we conducted simulation experiments using an image classification application that utilizes machine models trained by a convolutional neural network. The simulation results demonstrate that MoFeL outperforms traditional training coordination algorithms in FL, with 156.5% more training cycles, in scenarios with high mobility compared to an algorithm that does not consider mobility aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.