We describe the synthesis and characterization of metal-chelating polymers with a degree of polymerization of 67 and 79, high DTPA functionality, Mw/Mn ≤ 1.17, and a maleimide as an orthogonal functional group for conjugation to antibodies. The polymeric disulfide form of the DPn = 79 DTPA polymer was analyzed by thermogravimetric analysis to determine moisture and sodium-ion content, and by isothermal titration calorimetry (ITC) to determine the Gd3+ binding capacity. These results showed each chain binds 68 ± 7 Gd3+ per chain. Secondary goat anti-mouse IgG was covalently labeled with the maleimide form of the DTPA polymer (DPn = 79) carrying 159Tb. Conventional ICP-MS analysis of this conjugate showed each antibody carried an average of 161 ± 4 159Tb atoms. This result was combined with the ITC result to show there are an average of 2.4 ± 0.3 polymer chains attached to each antibody. Eleven monoclonal primary antibodies were labeled with different lanthanide isotopes using the same labeling methodology. Single cell analysis of whole umbilical cord blood stained with a mixture of 11 metal-tagged antibodies was performed by mass cytometry.
The diversity of nucleic acid sequences enables genomics studies in a highly multiplexed format. Since multiplex protein detection is still a challenge, it would be useful to use genomics tools for this purpose. This can be accomplished by conjugating specific oligonucleotides to antibodies. Upon binding of the oligonucleotide-conjugated antibodies to their targets, the protein levels can be converted to oligonucleotide levels. In this report we describe a simple method for preparing oligonucleotide-conjugated antibodies and discuss this method's application in oligonucleotide extension reaction (OER) for multiplex protein detection. Conjugation is based on strain-promoted alkyne-azide cycloaddition (the Cu-free click reaction), in which the antibody is activated with a dibenzocyclooctyne (DBCO) moiety and subsequently linked covalently with an azide-modified oligonucleotide. In the functional test, the reaction conditions and purification processes were optimized to achieve maximum yield and best performance. The OER assay employs a pair of antibody binders (two antibodies, each conjugated with its own oligonucleotide) developed for each protein target. The two oligonucleotides contain unique six-base complementary regions at their 3' prime ends to allow annealing and extension by DNA synthesis enzymes to form a DNA template. Following preamplification, the DNA template is detected by qPCR. Distinct oligonucleotide sequences are assigned to different antibody binders to enable multiplex protein detection. When tested using recombinant proteins, some antibody binders, such as those specific to CSTB, MET, EpCAM, and CASP3, had dynamic ranges of 5-6 logs. The antibody binders were also used in a multiplexed format in OER assays, and the binders successfully detected their protein targets in cell lysates, and in single cells in combination with the C1 system. This click reaction-based antibody conjugation procedure is cost-effective, needs minimal hands-on time, and is well-suited for the development of affordable multiplex protein assays, which provides the potential to accelerate proteomics research.
We describe the synthesis of metal-chelating polymers (MCPs) with four different pendant polyaminocarboxylate ligands (EDTA, DTPA, TTHA, DOTA) and an orthogonal end-group, either a fluorescein molecule or a bismaleimide linker for antibody attachment. Polymer characterization by a combination of (1)H NMR, UV/vis absorption measurements, and thermal gravimetric analysis (TGA) indicated that each chain of the fluorescein-terminated polymers contained one dye molecule. These polymer samples were loaded with three different types of lanthanide ions as well as palladium and platinum ions. The numbers of metal atoms per chain were determined by a combination of UV/vis and conventional ICP-MS measurements. The experiments with lanthanide ions demonstrated that a net anionic charge on the polymer is important for water solubility. These experiments also showed that at least one type of lanthanide ion (La(3+)) is capable of forming a bimetallic complex with pendant DTPA groups. Conditions were developed for loading these polymers with palladium and platinum ions. While these polymers could be conjugated to antibodies, the presence of Pd or Pt ions in the polymer interfered with the ability of the antibody to recognize its antigen. For example, a goat anti-mouse (secondary) antibody labeled with polymers that contain Pd or Pt no longer recognized a primary antibody in a sandwich assay. In mass cytometry assays, these Pd- or Pt-containing MCPs were very effective in recognizing dead cells and provide a new and robust assay for distinguishing live cells from dead cells.
Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd3+ as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels–Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln3+ ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.
Mass cytometry is a revolutionary technology that allows for the simultaneous quantification of >40 different biomarkers with cellular resolution. The biomarkers are detected using metal-labeled antibodies as well as small-molecule probes of cell size, viability, and biochemical status. Barcoding is an important component of sample preparation because it reduces processing time, eliminates sample-to-sample variation, discriminates cell doublets, reduces the amount of antibody needed, and conserves sample. We developed a thiol-reactive tellurium-based barcode, TeMal. TeMal is nontoxic at working concentrations, compatible with metal-labeled antibodies, and can readily be applied to live or fixed cells, making it advantageous and complementary compared to existing barcoding reagents. We have demonstrated the utility of TeMal by barcoding microscale samples in situ to facilitate analysis of cells from an automated cell culture system using mass cytometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.