The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile–butadiene rubber has the highest thermal stability in comparison to other belts.
In the construction industry, a variety wooden products have been used for thousands of years, according to demand, accessibility/availability, and customers’ requirements. Wood is a preferred material due to its large range of properties, depending on the type of wood. It is an easily available and economically competitive material, and it is also extremely strong in relation to its weight. Therefore, it is used in the production of construction materials, building parts, and finishing components, as well as for furniture and decorative elements. Each of these products is commonly additionally chemically treated in order to improve its performance parameters. However, impregnated wooden products such as furniture and fence boards are often misused, including for house heating, waste incineration, bonfires, etc. For this reason, among the products of combustion, there is a whole range of different chemical compounds, frequently carcinogenic, and dangerous for health and the environment, for example, heavy metals. Knowledge in this field is important for professions, such as: firefighter, lifeguard, people dealing with environmental management, and units responsible for waste landfills. On the other hand, important recipients of this information are ordinary residents who, due to a lack of knowledge, use such materials as e.g., heating material.
Publikacja finansowana przez NCBiR w ramach projektu "Zintegrowany system budowy planów zarządzania kryzysowego w oparciu o
The nature and conditions of the execution of tests (open or duct flow) in terms of evaluating the flow rate generated by positive pressure ventilators (PPV) may affect the parameters of the drive unit recorded during testing. In this article, popular PPVs (conventional type—W1 and turbo type—W2) of about 4.2 kW were tested under open flow (Method A) and duct flow (Method B) conditions. During the tests, engine load values were recorded: torque, speed, horsepower and, using portable emissions measurement systems (PEMS), exhaust gas emissions: carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), nitrogen oxides (NOx) and fuel consumption. Depending on the method used to measure ventilator flow rates, drive units can have different drive power requirements (from 3.2% to 4.5%). Changes in drive unit operating conditions induced by the flow measurement method are observed in the results of fuel consumption (from 0.65% to 9.8%) and emissions of harmful exhaust compounds: CO2 up to 2.4%, CO up to 67%, HC up to 93.2% and NOx up to 37%. The drive units of turbo type fans (W2) are more susceptible to the influence of the test methods in terms of flow assessment, where they have higher emissions of harmful exhaust gases when tested by Method A. Flow measurement methods affect the oscillation of propulsion power, which contributes to disturbances in the control of the fuel–air mixture composition. The purpose of this article is to analyse the impact of testing methods for measuring the flow rate of positive pressure ventilators on the performance of the drive unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.