One Sentence Summary:
Combined human and animal model studies conclusively implicate microbiota-triggered oral mucosal Th17 cells as drivers of local immunopathology and therapeutic targets in periodontitis.
Vascular endothelial growth factor (VEGF) is a potent mitogen and permeability factor for endothelial cells that plays a central role in angiogenesis, vascular maintenance, inflammation, and cancer. VEGF also mediates the homeostatic adaptation to hypoxic conditions by promoting an increase in vascular density to compensate for decreased oxygenation. This process is triggered by an oxygen-sensitive transcription factor, hypoxia-inducible factor-1 (HIF1␣), which becomes active in hypoxic tissues, leading to the synthesis and secretion of VEGF. The role of HIF1␣ in other processes that involve angiogenesis such as in inflammation is less clear. Of interest, endothelial cells not only respond to but also store and secrete VEGF, which is required for the maintenance of the integrity of the vascular system. How this intracellular pool of VEGF is regulated is still not understood. Here, we found that CXCL8/IL8, a potent proangiogenic and inflammatory chemokine, up-regulates VEGF mRNA and protein levels in endothelial cells by acting on its cognate receptor, CXCR2, and that this results in the autocrine activation of VEGFR2. Surprisingly, this process does not involve HIF1␣ but instead requires the activation of the transcription factor NFB. Furthermore, we identified the components of the CBM complex, Carma3, Bcl10, and Malt1, as key mediators of the CXCL8/IL8-induced NFB activation and VEGF up-regulation. Together, these findings support the existence of an NFB-mediated pathway by which the proinflammatory chemokine CXCL8/IL8 controls the expression of VEGF in endothelial cells, thereby promoting the activation of VEGF receptors in an autocrine fashion.
The recent elucidation of the genomic landscape of head and neck squamous cell carcinoma (HNSCC) has provided a unique opportunity to develop selective cancer treatment options. These efforts will require the establishment of relevant HNSCC models for preclinical testing. Here, we performed full exome and transcriptome sequencing of a large panel of HNSCC-derived cells from different anatomical locations and human papillomavirus (HPV) infection status. These cells exhibit typical mutations in TP53, FAT1, CDK2NA, CASP8, and NOTCH1, and copy number variations (CNVs) and mutations in PIK3CA, HRAS, and PTEN that reflect the widespread activation of the PI3K-mTOR pathway. SMAD4 alterations were observed that may explain the decreased tumor suppressive effect of TGF-β in HNSCC. Surprisingly, we identified HPV+ HNSCC cells harboring TP53 mutations, and documented aberrant TP53 expression in a subset of HPV+ HNSCC cases. This analysis also revealed that most HNSCC cells harbor multiple mutations and CNVs in epigenetic modifiers (e.g., EP300, CREBP, MLL1, MLL2, MLL3, KDM6A, and KDM6B) that may contribute to HNSCC initiation and progression. These genetically-defined experimental HNSCC cellular systems, together with the identification of novel actionable molecular targets, may now facilitate the pre-clinical evaluation of emerging therapeutic agents in tumors exhibiting each precise genomic alteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.