Although high-entropy materials are attracting considerable interest due to a combination of useful properties and promising applications, predicting their formation remains a hindrance for rational discovery of new systems. Experimental approaches are based on physical intuition and/or expensive trial and error strategies. Most computational methods rely on the availability of sufficient experimental data and computational power. Machine learning (ML) applied to materials science can accelerate development and reduce costs. In this study, we propose an ML method, leveraging thermodynamic and compositional attributes of a given material for predicting the synthesizability (i.e., entropy-forming ability) of disordered metal carbides. The relative importance of the thermodynamic and compositional features for the predictions are then explored. The approach's suitability is demonstrated by comparing values calculated with density functional theory to ML predictions. Finally, the model is employed to predict the entropy-forming ability of 70 new compositions; several predictions are validated by additional density functional theory calculations and experimental synthesis, corroborating the effectiveness in exploring vast compositional spaces in a highthroughput manner. Importantly, seven compositions are selected specifically, because they contain all three of the Group VI elements (Cr, Mo, and W), which do not form room temperature-stable rock-salt monocarbides. Incorporating the Group VI elements into the rock-salt structure provides further opportunity for tuning the electronic structure and potentially material performance.
Electron backscatter diffraction (EBSD) is one of the primary tools for crystal structure determination. However, this method requires human input to select potential phases for Hough-based or dictionary pattern matching and is not well suited for phase identification. Automated phase identification is the first step in making EBSD into a high-throughput technique. We used a machine learning–based approach and developed a general methodology for rapid and autonomous identification of the crystal symmetry from EBSD patterns. We evaluated our algorithm with diffraction patterns from materials outside the training set. The neural network assigned importance to the same symmetry features that a crystallographer would use for structure identification.
The emergence of commercial electron backscatter diffraction (EBSD) equipment ushered in an era of information rich maps produced by determining the orientation of user-selected crystal structures. Since then, a technological revolution has occurred in the quality, rate detection, and analysis of these diffractions patterns. The next revolution in EBSD is the ability to directly utilize the information rich diffraction patterns in a high-throughput manner. Aided by machine learning techniques, this new methodology is, as demonstrated herein, capable of accurately separating phases in a material by crystal symmetry, chemistry, and even lattice parameters with fewer human decisions. This work is the first demonstration of such capabilities and addresses many of the major challenges faced in modern EBSD. Diffraction patterns are collected from a variety of samples, and a convolutional neural network, a type of machine learning algorithm, is trained to autonomously recognize the subtle differences in the diffraction patterns and output phase maps of the material. This study offers a path to machine learning coupled phase mapping as databases of EBSD patterns encompass an increasing number of the possible space groups, chemistry changes, and lattice parameter variations.
Recent research suggests that attributing human movement to ambiguous and static Rorschach stimuli (M responses) is associated with EEG mu suppression, and that disrupting the left inferior gyrus (LIFG; a putative area implicated in mirroring activity) decreases the tendency to see human movement when exposed to the Rorschach ambiguous stimuli. The current study aimed to test whether disrupting the LIFG via repetitive transcranial stimulation (rTMS) would decrease both the number of human movement attributions and EEG mu suppression. Each participant was exposed to the Rorschach stimuli twice, i.e., during a baseline condition (without rTMS but with EEG recording) and soon after rTMS (TMS condition with EEG recording). Experimental group (N = 15) was stimulated over the LIFG, while the control group (N = 13) was stimulated over the Vertex. As expected, disrupting the LIFG but not Vertex, decreased the number of M attributions provided by the participants exposed to the Rorschach stimuli, with a significant interaction effect. Unexpectedly, however, rTMS did not significantly influence EEG mu suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.