The aim of this study was to determine the effect of exogenously applied Si on the growth and physiological parameters of sorghum [Sorghum bicolor (L.) Moench] cultivated in hydroponics with elevated zinc concentrations (75 µM and 150 µM Zn). Increased concentrations of Zn inhibited root growth and biomass production of roots and shoots. Application of Si individually showed a positive effect on root growth but negatively affected production of fresh and dry biomass of roots and shoots. On the other hand, silicon in combination with Zn significantly reduced the inhibitory effect of Zn on root growth but did not positively affect biomass production of roots and shoots. Accumulation of Zn in plant tissues increased with increasing Zn concentration in nutrient solution, but application of Si in combination with Zn did not significantly influence Zn accumulation in roots. Completely opposite results were found in Si accumulation in roots treated with Si in combination with Zn. Interaction of these ions resulted in considerable increase of Si accumulation in roots which almost doubled in comparison to individal Si treatment. Impact of Zn on the activity of some antioxidant enzymes was equivocal and differences were observed also between two Zn concentrations. Individual application of Si resulted in significant increase in the activity of all studied antioxidant enzymes but Si in combination with Zn mostly negatively affected their activity except the activity of catalase (CAT) which was the highest in roots grown in solution containing both Si and Zn ions. Comparing all obtained data we can assume that Si applied in combination with Zn did not significantly alleviate Zn toxicity in young sorghum except the growth of primary seminal root and further experiments are required for better understanding of their interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.