BackgroundThe increase and spread of virulent-outbreak associated, methicillin and vancomycin resistant (MRSA/VRSA) Staphylococcus aureus require a better understanding of the resistance and virulence patterns of circulating and emerging strains globally. This study sought to establish the resistance phenotype, and strains of 32 non-duplicate clinical MRSA and MSSA S. aureus isolates from four Kenyan hospitals, identify their resistance and virulence genes and determine the genetic relationships of MRSA with global strains.MethodsAntimicrobial susceptibility profiles were determined on a Vitek 2, genomic DNA sequenced on an Illumina Miseq and isolates typed in-silico. Resistance and virulence genes were identified using ARIBA and phylogenies generated using RAxML.ResultsThe MRSA isolates were 100% susceptible to vancomycin, teicoplanin, linezolid, and tigecycline. Nine distinct CC, 12 ST and 15 spa types including the novel t17826 and STs (4705, 4707) were identified with CC8 and CC152 predominating. MRSA isolates distributed across 3 CCs; CC5-ST39 (1), CC8 – ST241 (4), a novel CC8-ST4705 (1), ST8 (1) and CC152 (1). There was > 90% phenotype-genotype concordance with key resistance genes identified only among MRSA isolates: gyrA, rpoB, and parC mutations, mecA, ant (4′)-lb, aph (3′)-IIIa, ermA, sat-4, fusA, mphC and msrA. Kenyan MRSA isolates were genetically diverse and most closely related to Tanzanian and UK isolates. There was a significant correlation between map, hlgA, selk, selq and cap8d virulence genes and severe infections.ConclusionThe findings showed a heterogeneous S. aureus population with novel strain types. Though limited by the low number of isolates, this study begins to fill gaps and expand our knowledge of S. aureus epidemiology while uncovering interesting patterns of distribution of strain types which should be further explored. Although last-line treatments are still effective, the potential for outbreaks of both virulent and resistant strains remain, requiring sustained surveillance of S. aureus populations.
Introduction: Uropathogenic Escherichia coli (UPECs) are a significant cause of urinary tract infections (UTIs). In Kenya, UTIs are typically treated with b-lactam antibiotics without antibiotic susceptibility testing, which could accelerate antibiotic resistance among UPEC strains. Aim: This study determined the occurrence of UPEC producing extended-spectrum b-lactamases (ESBLs), the genes conferring resistance to b-lactams, and the phylogenetic groups associated with ESBLs in Kenyan UPECs. Methodology: Ninety-five UPEC isolates from six Kenyan hospitals were tested for ESBL and plasmidmediated AmpC b-lactamase (pAmpC) production by combined disk diffusion and disk approximation tests, respectively. Real-time and conventional polymerase chain reactions (PCRs) were used to detect three ESBL and six pAmpC genes, respectively, and phylogenetic groups were assigned by a quadruplex PCR method. Results: Twenty-four percent UPEC isolates were ESBL producers with bla CTX-M (95.6%), bla TEM (95.6%), and bla SHV (21.7%) genes detected. Sixteen isolates had bla CTX-M/TEM , whereas five had bla TEM/CTX-M/SHV . A total of 5/23 ESBLs were cefoxitin resistant, but no AmpC genes were detected. The UPECs belonged predominantly to phylogenetic groups B2 (31/95; 32.6%) and D (30/95; 31.6%), while groups B2 and A had the most ESBL producers. Conclusions: b-Lactam antibiotics have reduced utility for treating UTIs as a quarter of UPECs were ESBL producing. Single or multiple ESBL genes were present in UPECs, belonging primarily to phylogenetic groups B2 and A.
Microbial monitoring of hospital surfaces can help identify target areas for improved infection prevention and control (IPCs). This study aimed to determine the levels and variations in the bacterial contamination of high-touch surfaces in five Kenyan hospitals and identify the contributing modifiable risk factors. A total of 559 high-touch surfaces in four departments identified as high risk of hospital-acquired infections were sampled and examined for bacterial levels of contamination using standard bacteriological culture methods. Bacteria were detected in 536/559 (95.9%) surfaces. The median bacterial load on all sampled surfaces was 6.0 × 104 CFU/cm2 (interquartile range (IQR); 8.0 × 103–1.0 × 106). Only 55/559 (9.8%) of the sampled surfaces had acceptable bacterial loads, <5 CFU/cm². Cleaning practices, such as daily washing of patient sheets, incident rate ratio (IRR) = 0.10 [95% CI: 0.04–0.24], providing hand wash stations, IRR = 0.25 [95% CI: 0.02–0.30], having running water, IRR = 0.19 [95% CI: 0.08–0.47] and soap for handwashing IRR = 0.21 [95% CI: 0.12–0.39] each significantly lowered bacterial loads. Transporting dirty linen in a designated container, IRR = 72.11 [95% CI: 20.22–257.14], increased bacterial loads. The study hospitals can best reduce the bacterial loads by improving waste-handling protocols, cleaning high-touch surfaces five times a day and providing soap at the handwash stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.