Currently, many cities in Europe are affected by concentrations of PM2.5 and NO2 above the WHO guidelines on the protection of human health. This is a global problem in which the growth of road transport constitutes a major factor. Looking to the future, electric vehicles (EVs) are considered to be the choice technology for reducing road transport greenhouse gas emissions, but their impact on air quality needs to be considered. Taking the UK as a case study, this paper begins by understanding the trajectory of a future scenario without the introduction of EVs, reflecting on the latest emission control improvements in internal combustion engine vehicles (ICEVs). This is then compared to a 2050 scenario in which the introduction of EVs, based on the UK government’s Transport Decarbonisation Plan, is reviewed. This plan includes a ban on the sale of ICEV cars and LGVs, beginning in 2030, with the subsequent electrification of heavier vehicles. By 2030, population exposure to NOx was found to be significantly reduced in the ICEV scenario, with a marginal further reduction found for the EV scenario. The EV scenario further reduced NOx exposure by 2050, with most of the benefits being realized before 2040. For the ICEV and EV scenario, PM2.5 emissions were largely unchanged due to the primary contribution of non-exhaust emissions, suggesting that EVs are likely to yield relatively smaller changes in exposure to PM2.5 than for NOx.
Around the world, efforts to contain the COVID-19 pandemic have profoundly changed human activity, which may have improved air quality and reduced greenhouse gas emissions. We investigated the impact of the pandemic on energy demand and subsequent emissions from electricity and gas throughout 2020 in the UK. The daily pattern of electricity demand changed in both lockdowns, with weekday demand shifting to that of a typical pre-pandemic weekend. Energy demand in 2020 was modelled to reveal the impact of the weather and the pandemic. The first lockdown reduced demand by 15.6% for electricity and 12.0% for commercial gas, whereas the second lockdown produced reductions less than half. Domestic gas demand did not change during the first lockdown, but increased by 6.1% in the second, likely due to increased domestic heat demand. The changes in demand for gas resulted in little change to overall gas consumption emissions during the pandemic. For electricity, large emission reductions occurred during the two lockdowns: up to 22% for CO2, 47% for NO
x
, and 29% for PM2.5. Yet, the largest CO2 emission reduction for electricity in 2020 (25%) occurred before the pandemic, which happened during a warm and stormy spell with exceptional wind generation. These observations suggest that future similar changes in activity may result in little change for gas demand and emissions. For electricity, emission reductions through changes in energy demand are made possible by the generation mix. To enable further emission reductions in the future, the generation mix should continue to decarbonise. This will yield emission reductions in both times of lowered energy demand, but more importantly, during times of high renewable output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.