Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [14 C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans. Coronary heart disease is the most important clinical manifestation of atherosclerosis and remains the main cause of death in developed societies. Hypercholesterolemia is beyond doubt the most prominent risk factor for the development of atherosclerosis, which is caused by derangements in cholesterol homeostasis (i.e., intestinal uptake, endogenous synthesis and metabolism, transport in lipoprotein particles, and biliary excretion). At present, there are increasing efforts to understand the physiology of intestinal fat transport in view of the positive relationship between cholesterol absorption, plasma cholesterol levels, and coronary heart disease (1-4). Additionally, augmented dietary fat and cholesterol intake have been tightly linked to the increased incidence of other diseases, such as cancer, diabetes, and obesity (5-7).In stark contrast to previous tenets suggesting that cholesterol uptake occurs as a passive diffusion down a concentration gradient, more and more investigators now support protein-mediated cholesterol absorption. Curiously, protein transporters intervening in intestinal cholesterol movement have not yet been ascertained. A few recent studies have proposed scavenger receptor class B type I (SR-BI) as a candidate protein involved in dietary cholesterol transport (8-11). On the other hand, the involvement of SR-BI in cholesterol uptake has been questioned because intestinal cholesterol absorption was shown to be unaffected by deletion of the SR-BI gene in mice (10, 12). Other laboratori...
Tolerance to morphine analgesia is believed to result from a neuronal adaptation produced by continuous drug administration, although the precise mechanisms involved have yet to be established. Recently, we reported selective alterations in rat spinal calcitonin gene-related peptide (CGRP) markers in morphine-tolerant animals. In fact, increases in CGRP-like immunostaining and decrements in specific [125]hCGRP binding in the superficial laminae of the dorsal horn were correlated with the development of tolerance to the spinal antinociceptive action of morphine. Other spinally located peptides such as substance P, galanin, and neuropeptide Y were unaffected. Thus, the major goal of the present study was to investigate whether the development of tolerance to spinally infused morphine could be modulated by the blockade of dorsal horn CGRP receptors using the potent CGRP antagonist hCGRP(8-37). Indeed, cotreatments with hCGRP(8-37) prevented, in a dose-dependent manner, the development of tolerance to morphine-induced analgesia in both the rat tail-flick/tail-immersion and paw-pressure tests. Moreover, alterations in spinal CGRP markers seen in morphine-tolerant animals were not observed after a coadministration of morphine and hCGRP(8-37). These results demonstrate the existence of specific interaction between CGRP and the development of tolerance to the spinal antinociceptive effects of morphine. They also suggest that CGRP receptor antagonists could become useful adjuncts in the treatment of pain and tolerance to the antinociceptive effects of morphine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.