Improving the protection of concrete by applying graphene oxide (GO) as a surface treatment has become the objective of the present study. This study focuses on performing a statistical analysis to study different levels of GO application as an exterior coating, thus observing the effectiveness of the coating and the optimization of the treatment material for concrete protection. Four tests were performed to define concrete durability, such as pressurized water penetration, capillary absorption, freeze-thaw resistance and carbonation resistance. The results showed an increase in concrete durability with any level of GO application on the surface, considering that the optimum amount of application for water impermeability and freeze-thaw resistance is 26.2 µg/cm2, since it was possible to reduce pressurized water penetration by 45%, capillary water absorption by 57% and freeze-thaw detachment by 25%. However, the optimum application rate for carbonation resistance is 52.4 µg/cm2, reducing carbonation by almost 60%. In conclusion, if the concrete is going to be exposed to less aggressive environments, the application of a mild surface coating of GO is sufficient for its protection, and if the concrete is going to be exposed to more aggressive environments, it is necessary to increase the amount of GO. The performance of GO as a coating significantly increased the degree of protection of the concrete, increasing its service life and proving to be a promising treatment for concrete surface protection.
One approach to tackle the problems created by the vast amounts of construction and demolition waste (CDW) generated worldwide while at the same time lengthening concrete durability and service life is to foster the use of recycled aggregate (RA) rather than natural aggregate (NA). This article discusses the use of polyhydroxyalkanoates (PHAs)-producing mixed microbial cultures (MMCs) to treat the surface of recycled concrete with a view to increase its resistance to water-mediated deterioration. The microorganisms were cultured in a minimal medium using waste pinewood bio-oil as a carbon source. Post-application variations in substrate permeability were determined with the water drop absorption and penetration by water under pressure tests. The significant reduction in water absorption recorded reveals that this bioproduct is a promising surface treatment for recycled concrete.
The large increase in the world population has resulted in a very large amount of construction waste, as well as a large amount of waste glycerol from transesterification reactions of acyl glycerides from oils and fats, in particular from the production of biodiesel. Only a limited percentage of these two residues are recycled, which generates a large management problem worldwide. For that reason, in this study, we used crude glycerol as a carbon source to cultivate polyhydroxyalkanoates (PHA)-producing mixed microbial cultures (MMC). Two bioproducts derived from these cultures were applied on the surface of concrete with recycled aggregate to create a protective layer. To evaluate the effect of the treatments, tests of water absorption by capillarity and under low pressure with Karsten tubes were performed. Furthermore, SEM-EDS analysis showed the physical barrier caused by biotreatments that produced a reduction on capillarity water absorption of up to 20% and improved the impermeability of recycled concrete against the penetration of water under pressure up to 2.7 times relative to the reference. Therefore, this bioproduct shown to be a promising treatment to protect against penetration of water to concrete surfaces increasing its durability and useful life.
Two eco-friendly healing bioproducts generated from microbial mixed cultures (MMC) for the production of polyhydroxyalkanoates (PHA) were used as surface treatments, with two residual materials used as the substrates, namely crude glycerol and pinewood bio-oil. Their ability to improve the durability of concrete samples containing recycled aggregates was assessed. To determine this protective capacity, 180 samples were analyzed using different tests, such as water penetration under pressure, capillary absorption, freeze–thaw and water droplet absorption test. Three types of conditions were used: outdoor–indoor exposure, re-application of biopolymers and application in vertical exposure conditions. The results showed reductions of up to 50% in the water penetration test and a delay in the water droplet absorption test of up to 150 times relative to the reference. The surface application of these bioproducts significantly reduced the degree of water penetration in recycled concrete, increasing its useful lifespan and proving to be a promising treatment for protecting concrete surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.