This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well as shortcomings, are presented. The investigations are performed for two 10MW reference wind turbines under axial inflow conditions, namely the turbines designed in the EU AVATAR and INNWIND.EU projects. The results show that the evaluated methods are in good agreement with each other at the mid-span, though some deviations are observed at the root and tip regions of the blades. This indicates that CFD results can be used for the calibration of induction modeling for Blade Element Momentum (BEM) tools. Moreover, using any of the proposed methods, it is possible to obtain airfoil characteristics for lift and drag coefficients as a function of the angle of attack. Nomenclature ρ Air density [kg m −3 ] Γ Circulation [m 2 s −1 ]
a b s t r a c tPrevious experimental work under controlled conditions on a small scale floating offshore horizontal axis wind turbine has shown an increasing amplitude of the cyclic thrust and power generation against tip speed ratio under the influence of surge motion. A numerical study is performed using an actuator disc Navier Stokes model, a Blade Element Momentum model and a Generalized Dynamic Wake model on the NREL 5 MW reference rotor in order to confirm or reject these observations on a full-scale surging rotor. The hypothesis was confirmed and the underlying reasons for the observed behaviour were studied on the basis of the near wake physics. It was found that the analysis of transient effects such as fatigue cannot be performed without an adequate aerodynamic model of the wake. Characterization of quasisteady and unsteady regimes may be useful to establish when detailed aerodynamic wake models are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.