The biomolecular mechanism of nickel carcinogenicity is driven by intracellular Ni cation. The role of nickel catalyst in single‐wall carbon nanotube toxicity will therefore depend on its bioavailability, which is highly uncertain due to encapsulation by carbon shells. This article measures the material‐specific Ni release into extra‐ and intracellular physiological fluid phases and suggests practical techniques for managing the metals contribution to SWNT toxicity.
The ultimate success of many nanotechnologies will depend on our ability to understand and manage nanomaterial health risks. Carbon nanotubes are now primarily fabricated by catalytic routes and typically contain significant quantities of transition metal catalyst residues. Iron-catalyzed free-radical generation has been hypothesized to contribute to oxidative stress and toxicity upon exposure to ambient particulate, amphibole asbestos fibers, and single-wall carbon nanotubes. A key issue surrounding nanotube iron is bioavailability, which has not been systematically characterized, but is widely thought to be low on the basis of electron microscope observations of metal encapsulation by carbon shells. Here, we validate and apply simple acellular assays to show that toxicologically significant amounts of iron can be mobilized from a diverse set of commercial nanotube samples in the presence of ascorbate and the chelating agent ferrozine. This mobilized iron is redox active and induces single-strand breaks in plasmid DNA in the presence of ascorbate. Iron bioavailability varies greatly from sample to sample and cannot be predicted from total iron content. Iron bioavailability is not fully suppressed by vendor "purification" and is sensitive to partial oxidation, mechanical stress, sample age, and intentional chelation. The results suggest practical materials chemistry approaches for anticipating and managing bioavailable iron to minimize carbon nanotube toxicity.
There is substantial evidence for toxicity and/or carcinogenicity upon inhalation of pure transition metals in fine particulate form. Carbon nanotube catalyst residues may trigger similar metal-mediated toxicity, but only if the metal is bioavailable and not fully encapsulated within fluid-protective carbon shells. Recent studies have documented the presence of bioavailable iron and nickel in a variety of commercial as-produced and vendor "purified" nanotubes, and the present article examines techniques to avoid or remove this bioavailable metal. First, data are presented on the mechanisms potentially responsible for free metal in "purified" samples, including kinetic limitations during metal dissolution, the re-deposition or adsorption of metal on nanotube outer surfaces, and carbon shell damage during last-step oxidation or one-pot purification. Optimized acid treatment protocols are presented for targeting the free metal, considering the effects of acid strength, composition, time, and conditions for post-treatment water washing. Finally, after optimized acid treatment, it is shown that the remaining, non-bioavailable (encapsulated) metal persists in a stable and biologically unavailable form up to two months in an in vitro biopersistence assay, suggesting that simple removal of bioavailable (free) metal is a promising strategy for reducing nanotube health risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.