An ultrafiltration unit with a polyvinylidene fluoride (PVDF) membrane of 40 nm nominal pore size was used to study bacteriophage MS2 removal under different membrane conditions: pristine membrane, membrane fouled by soluble microbial product (SMP) extracted from membrane bioreactor (MBR) feedwater, backwashed membrane, and chemically cleaned membrane. The order of MS2 removal by these membranes was as follows: fouled membrane > backwashed membrane > chemically cleaned membrane ≈ pristine membrane. A linear correlation between membrane relative permeability and MS2 removal was found. Mass balance analysis showed a high percentage of MS2 in the concentrate for the fouled membrane as compared with the pristine membrane. Quartz crystal microbalance (QCM) results showed faster kinetics of MS2 adhesion to the pristine membrane than to the SMP-fouled membrane. In agreement with QCM results, an attractive force between MS2 and the pristine membrane was detected using an atomic force microscope (AFM), whereas a repulsive force was detected for the interaction between MS2 and the fouled membrane. The presence of SMP on the membrane surface led to higher rejection of MS2 due to both pore blocking and repulsion between MS2 and the SMP layer. Chemical cleaning removed most of the SMP foulant and as a result led to a lower MS2 removal.
Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle‐shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter‐coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage‐ or laser‐pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.
Hydroxyapatite (HAP) is a cost-effective material to remove excess levels of fluoride from water. Historically, HAP has been considered a fluoride adsorbent in the environmental engineering community. This paper substantiates an uptake paradigm that has recently gained disparate support: assimilation of fluoride to bulk apatite lattice sites in addition to surface lattice sites. Pellets of HAP nanoparticles (NPs) were packed into a fixed-bed media filter to treat solutions containing 30 mg-F/L (1.58 mM) at pH 8, yielding an uptake of 15.97 ± 0.03 mg-F/g-HAP after 864 h. Solid-state 19 F and 13 C magicangle spinning nuclear magnetic resonance spectroscopy demonstrated that all removed fluoride is apatitic. A transmission electron microscopy analysis of particle size distribution, morphology, and crystal habit resulted in the development of a model to quantify adsorption and total fluoride capacity. Low-and high-estimate median adsorption capacities were 2.40 and 6.90 mg-F/g-HAP, respectively. Discrepancies between experimental uptake and adsorption capacity indicate the range of F − that internalizes to satisfy conservation of mass. The model was developed to demonstrate that F − internalization in HAP NPs occurs under environmentally relevant conditions and as a tool to understand the extent of F − internalization in HAP NPs of any kind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.