While memory CD4 T cells are critical for effective immunity to pathogens, the mechanisms underlying their generation are still poorly defined. We find that following murine influenza infection, most effector CD4 T cells undergo apoptosis unless they encounter cognate Ag at a defined stage near the peak of effector generation. Ag recognition at this “memory checkpoint” blocks default apoptosis and programs their transition to long-lived memory. Strikingly, we find that viral infection is not required, as memory formation can be restored by the addition of short-lived, Ag-pulsed APC at this checkpoint. The resulting memory CD4 T cells express an enhanced memory phenotype, have increased cytokine production, and provide protection against lethal influenza infection. Finally, we find that memory CD4 T cell formation following cold-adapted influenza vaccination is boosted when Ag is administered during this checkpoint. These findings imply that persistence of viral Ag presentation into the effector phase is the key factor that determines the efficiency of memory generation. We also suggest that administering Ag at this checkpoint may improve vaccine efficacy.
Containment of Mycobacterium tuberculosis (Mtb) infection requires T cell recognition of infected macrophages. Mtb has evolved to tolerate, evade, and subvert host immunity. Despite a vigorous and sustained CD8+ T cell response during Mtb infection, CD8+ T cells make limited contribution to protection. Here, we ask whether the ability of Mtb-specific T cells to restrict Mtb growth is related to their capacity to recognize Mtb-infected macrophages. We derived CD8+ T cell lines that recognized the Mtb immunodominant epitope TB10.44−11 and compared them to CD4+ T cell lines that recognized Ag85b240-254 or ESAT63-17. While the CD4+ T cells recognized Mtb-infected macrophages and inhibited Mtb growth in vitro, the TB10.4-specific CD8+ T cells neither recognized Mtb-infected macrophages nor restricted Mtb growth. TB10.4-specific CD8+ T cells recognized macrophages infected with Listeria monocytogenes expressing TB10.4. However, over-expression of TB10.4 in Mtb did not confer recognition by TB10.4-specific CD8+ T cells. CD8+ T cells recognized macrophages pulsed with irradiated Mtb, indicating that macrophages can efficiently cross-present the TB10.4 protein and raising the possibility that viable bacilli might suppress cross-presentation. Importantly, polyclonal CD8+ T cells specific for Mtb antigens other than TB10.4 recognized Mtb-infected macrophages in a MHC-restricted manner. As TB10.4 elicits a dominant CD8+ T cell response that poorly recognizes Mtb-infected macrophages, we propose that TB10.4 acts as a decoy antigen. Moreover, it appears that this response overshadows subdominant CD8+ T cell response that can recognize Mtb-infected macrophages. The ability of Mtb to subvert the CD8+ T cell response may explain why CD8+ T cells make a disproportionately small contribution to host defense compared to CD4+ T cells. The selection of Mtb antigens for vaccines has focused on antigens that generate immunodominant responses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize Mtb-infected macrophages could be a useful criterion for preclinical vaccine development.
The epidermal growth factor receptor family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, more than 70% of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germ-line mutations (Li-Fraumeni Syndrome) suggests the key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis we introduced a mutant p53 R172H allele into a (MMTV)-ErbB2/Neu mouse model. We show in heterozygous p53 mice that mutp53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. We provide molecular evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cancer cell proliferation. This study therefore identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated breast cancer and indicates the potential translational importance of targeting mutant p53 in this subset of breast cancer patients.
The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in murine macrophages to identify the regulators of IFNγ-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multiscreen approach enabled us to identify novel pathways that preferentially control functionally distinct proteins. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNγ signaling pathway. We report that the IFNγ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNγ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity.
Abstractresponses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize 42Mtb-infected macrophages could be a useful criterion for preclinical vaccine development. 43All rights reserved. No reuse allowed without permission.(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.