ObjectivesEvidence suggests that B cell-depleting therapy with rituximab (RTX) affects humoral immune response after vaccination. It remains unclear whether RTX-treated patients can develop a humoral and T-cell-mediated immune response against SARS-CoV-2 after immunisation.MethodsPatients under RTX treatment (n=74) were vaccinated twice with either mRNA-1273 or BNT162b2. Antibodies were quantified using the Elecsys Anti-SARS-CoV-2 S immunoassay against the receptor-binding domain (RBD) of the spike protein and neutralisation tests. SARS-CoV-2-specific T-cell responses were quantified by IFN-γ enzyme-linked immunosorbent spot assays. Prepandemic healthy individuals (n=5), as well as healthy individuals (n=10) vaccinated with BNT162b2, served as controls.ResultsAll healthy controls developed antibodies against the SARS-CoV-2 RBD of the spike protein, but only 39% of the patients under RTX treatment seroconverted. Antibodies against SARS-CoV-2 RBD significantly correlated with neutralising antibodies (τ=0.74, p<0.001). Patients without detectable CD19+ peripheral B cells (n=36) did not develop specific antibodies, except for one patient. Circulating B cells correlated with the levels of antibodies (τ=0.4, p<0.001). However, even patients with a low number of B cells (<1%) mounted detectable SARS-CoV-2-specific antibody responses. SARS-CoV-2-specific T cells were detected in 58% of the patients, independent of a humoral immune response.ConclusionsThe data suggest that vaccination can induce SARS-CoV-2-specific antibodies in RTX-treated patients, once peripheral B cells at least partially repopulate. Moreover, SARS-CoV-2-specific T cells that evolved in more than half of the vaccinated patients may exert protective effects independent of humoral immune responses.
Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.
ObjectivesSARS‐CoV‐2-induced COVID-19 has led to exponentially rising mortality, particularly in immunosuppressed patients, who inadequately respond to conventional COVID-19 vaccination.MethodsIn this blinded randomised clinical trial, we compare the efficacy and safety of an additional booster vaccination with a vector versus mRNA vaccine in non-seroconverted patients. We assigned 60 patients under rituximab treatment, who did not seroconvert after their primary mRNA vaccination with either BNT162b2 (Pfizer–BioNTech) or mRNA-1273 (Moderna), to receive a third dose, either using the same mRNA or the vector vaccine ChAdOx1 nCoV-19 (Oxford–AstraZeneca). Patients were stratified according to the presence of peripheral B cells. The primary efficacy endpoint was the difference in the SARS-CoV-2 antibody seroconversion rate between vector (heterologous) and mRNA (homologous) vaccinated patients by week 4. Key secondary endpoints included the overall seroconversion and cellular immune response; safety was assessed at week 1 and week 4.ResultsSeroconversion rates at week 4 were comparable between vector (6/27 patients, 22%) and mRNA (9/28, 32%) vaccines (p=0.6). Overall, 27% of patients seroconverted; specific T cell responses were observed in 20/20 (100%) vector versus 13/16 (81%) mRNA vaccinated patients. Newly induced humoral and/or cellular responses occurred in 9/11 (82%) patients. 3/37 (8%) of patients without and 12/18 (67%) of the patients with detectable peripheral B cells seroconverted. No serious adverse events, related to immunisation, were observed.ConclusionsThis enhanced humoral and/or cellular immune response supports an additional booster vaccination in non-seroconverted patients irrespective of a heterologous or homologous vaccination regimen.
BackgroundPolymyalgia rheumatica is the second most common inflammatory rheumatic disease of people >50 years. Glucocorticoid therapy is highly effective, but many patients require treatment for several years. Effective glucocorticoid sparing agents are still needed.MethodsIn this double-blind, multi-centre phase 2/3 clinical trial, we randomly assigned 36 patients with new onset polymyalgia rheumatica from three centres to receive subcutaneous tocilizumab (162 mg per week) or placebo for 16 weeks (1:1 ratio). All patients received oral prednisone, tapered from 20 mg to 0 mg over 11 weeks.The primary endpoint was the proportion of patients in glucocorticoid-free remission at week 16; key secondary endpoints, including time to first relapse and cumulative glucocorticoid dose at weeks 16 and 24, were evaluated.ResultsFrom 20 November 2017 to 28 October 2019 39 patients were screened for eligibility; 19 patients received tocilizumab and 17 placebo. Glucocorticoid-free remission at week 16 was achieved in 12 out of 19 patients on tocilizumab (63.2%) and 2 out of 17 patients receiving placebo (11.8%, p=0.002), corresponding to an OR of 12.9 (95 % CI: 2.2 to 73.6) in favour of tocilizumab. Mean (±SD) time to first relapse was 130±13 and 82±11 days (p=0.007), respectively, and the median (IQR) cumulative glucocorticoid dose was 727 (721–842) mg and 935 (861–1244) mg (p=0.003), respectively. Serious adverse events were observed in five placebo patients and one tocilizumab patient.ConclusionIn patients with new onset polymyalgia rheumatica undergoing rapid glucocorticoid tapering, tocilizumab was superior to placebo regarding sustained glucocorticoid-free remission, time to relapse and cumulative glucocorticoid dose.Trial registration numberNCT03263715
ObjectiveTo assess the humoral response to messenger RNA (mRNA) vaccine of patients with systemic autoimmune rheumatic disease (SARD) and the effect of immunosuppressive medication in a matched cohort study.MethodsPatients with SARD were enrolled and matched 1:1 for sex and age with healthy control (HC) subjects. Differences in humoral response to two doses of an mRNA vaccine in terms of seroconversion rate (SCR) and SARS-CoV-2 antibody level between the two groups and the impact of treatment within patients with SARD were assessed.ResultsWe enrolled 82 patients with SARD and 82 matched HC. SCR after the first dose was lower among the patient group than that of HC (65% compared with 100% in HC, p<0.0001) but levelled up after the second dose (94% vs 100%). After the second dose, SCR was lower for patients on combination disease-modifying antirheumatic drug (DMARD) therapy compared with all other groups (81% compared with 95% for monotherapy, p=0.01; 100% for both no DMARD therapy and HC, both p<0.0001). In addition, antibody levels after both doses were lower in patients compared with HC. We found that vaccination response was determined primarily by the number of DMARDs and/or glucocorticoids received, with patients receiving combination therapy (dual and triple therapy) showing the poorest response.ConclusionsPatients with SARD showed a good response after the second vaccination with an mRNA vaccine. However, the choice of immunosuppressive medication has a marked effect on both SCR and overall antibody level, and the number of different immunomodulatory therapies determines vaccination response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.