Since the introduction of rental E-scooters in Germany in mid-June 2019, the safety of this new means of transport has been the subject of extensive public debate. However, valid data on injuries and usage habits are not yet available. This retrospective two-center study included a total of 76 patients who presented to the emergency department following E-scooter-related accidents. The mean age was 34.3 ± 12.4 years and 69.7% of the patients were male. About half of the patients were admitted by ambulance (42.1%). Fractures were found in 48.6% of patients, and 27.6% required surgical treatment due to a fracture. The upper extremities were the most commonly affected body region, followed by injuries to the lower extremity and to the head and face. Only one patient had worn a helmet. In-hospital treatment was necessary for 26.3% of the cases. Patients presented to the emergency department mainly during the weekend and on-call times. This is the first report on E-scooter-related injuries in Germany. Accidents with E-scooters can cause serious injuries and, therefore, represent a further burden to emergency departments. The use of E-scooters appears to be mostly recreational, and the rate of use of protective gear is low.
Biofilm growth has been observed in Soviet/Russian (Salyuts and Mir), American (Skylab), and International (ISS) Space Stations, sometimes jeopardizing key equipment like spacesuits, water recycling units, radiators, and navigation windows. Biofilm formation also increases the risk of human illnesses and therefore needs to be well understood to enable safe, long-duration, human space missions. Here, the design of a NASA-supported biofilm in space project is reported. This new project aims to characterize biofilm inside the International Space Station in a controlled fashion, assessing changes in mass, thickness, and morphology. The space-based experiment also aims at elucidating the biomechanical and transcriptomic mechanisms involved in the formation of a “column-and-canopy” biofilm architecture that has previously been observed in space. To search for potential solutions, different materials and surface topologies will be used as the substrata for microbial growth. The adhesion of bacteria to surfaces and therefore the initial biofilm formation is strongly governed by topographical surface features of about the bacterial scale. Thus, using Direct Laser-Interference Patterning, some material coupons will have surface patterns with periodicities equal, above or below the size of bacteria. Additionally, a novel lubricant-impregnated surface will be assessed for potential Earth and spaceflight anti-biofilm applications. This paper describes the current experiment design including microbial strains and substrata materials and nanotopographies being considered, constraints and limitations that arise from performing experiments in space, and the next steps needed to mature the design to be spaceflight-ready.
Surface structures in the micro-and nanometre length scale exert a major influence on performance and functionality for many specialized applications in surface engineering. However, they are often limited to certain pattern scales and materials, depending on which processing technique is used. Likewise, the morphology of the topography is in complex relation to the utilized processing methodology. in this study, the generation of hierarchical surface structures in the micro-as well as the sub-micrometre scale was achieved on ceramic, polymer and metallic materials by utilizing Ultrashort pulsed Direct Laser interference patterning (USp-DLip). the morphologies of the generated patterns where examined in relation to the unique physical interaction of each material with ultrashort pulsed laser irradiation. In this context, the pattern formation on copper, CuZn37 brass and AISI 304 stainless steel was investigated in detail by means of a combination of experiment and simulation to understand the individual thermal interactions involved in USp-DLip processing. thereby, the pattern's hierarchical topography could be tailored besides achieving higher process control in the production of patterns in the sub-µm range by USp-DLip. Highly specific surface properties in nature, like the well-known lotus and shark skin effects, are closely related to surface structures in the micrometre and nanometre length scale, often involving hierarchical patterns 1. In fact, such biomimetic surface patterns have already proven to provide unique properties in several technical systems including the manipulation of contact mechanics and optical properties like light diffraction and absorption 2-4. Patterns on the threshold between the micro-and the nanometre scale also showed to provide promising surface properties for medical products, as they can tailor the adhesion of both, cells and germs 5-7. In this context, current research projects investigate the intricacies to prevent biofilm formation by surface patterning of different solid materials on the International Space Station (ISS), which endanger its crew in terms of both, health and damage to critical components 8. The predominant impact on the unique properties of patterned surfaces is defined by the scale and morphology of the surface features also including sub-patterns, which have to be adjusted specifically for each application. For instance, in antibacterial applications, feature sizes in the sub-µm length scale showed to be most effective against bacterial adhesion 7-10. The processing methodology, dealing with such delicate surface modification, needs to ensure high machining precision as well as processing speeds and costs, which are able to compete with the classical methods of surface engineering. Besides lithographic methods, laser interference-based techniques have proven their worth in generating precise surface patterns, as they provide high processing speeds with little to no need for preparation and post-processing 11. Direct Laser Interference Patterning (DLIP) usi...
Current estimates by the World Health Organization (WHO) suggest that the number of deaths caused by multidrug-resistant bacteria worldwide could rise to ten million per year by 2050, if the current trend continues. [2] One way to fight both critical biofilm formation as well as the spreading of infectious diseases is to reduce the survivability of bacteria on technically and frequently touched contact surfaces, by using actively antimicrobial materials like copper (Cu) and silver (Ag) that are not based on pharmaceutical antibiotics. Here, Cu shows great potential for a wider application, [3,4] looking back to a multi-millennial history of repeated rediscovery of its aseptic properties, [5] while it is also involved as a trace element in central processes of human metabolism. [6] In contrast, Ag exhibits toxicity at low quantities, [7] by which dosing has to be precisely adjusted in case of antimicrobial application to avoid a negative immune response. [8] Due to the toxic effect of released Cu ions, bacteria [9,10] as well as viruses [11] are rapidly killed in both dry and moist environments, when adhering to Cu surfaces. The antimicrobial properties of Cu are closely linked to both the amount of ions released and absorbed by the attacked microorganism, whereby specific effects have to be considered when using Cu as an antimicrobial agent: 1) It Copper (Cu) exhibits great potential for application in the design of antimicrobial contact surfaces aiming to reduce pathogenic contamination in public areas as well as clinically critical environments. However, current application perspectives rely purely on the toxic effect of emitted Cu ions, without considering influences on the interaction of pathogenic microorganisms with the surface to enhance antimicrobial efficiency. In this study, it is investigated on how antibacterial properties of Cu surfaces against Escherichia coli can be increased by tailored functionalization of the substrate surface by means of ultrashort pulsed direct laser interference patterning (USP-DLIP). Surface patterns in the scale range of single bacteria cells are fabricated to purposefully increase bacteria/surface contact area, while parallel modification of the surface chemistry allows to involve the aspect of surface wettability into bacterial attachment and the resulting antibacterial effectivity. The results exhibit a delicate interplay between bacterial adhesion and the expression of antibacterial properties, where a reduction of bacterial cell viability of up to 15-fold can be achieved for E. coli on USP-DLIP surfaces in comparison to smooth Cu surfaces. Thereby, it can be shown how the antimicrobial properties of copper surfaces can be additionally enhanced by targeted surface functionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.