Surface roughness is a terrain parameter that has been widely applied to the study of geomorphological processes. One of the main challenges in studying roughness is its highly scale-dependent nature. Determining appropriate mapping scales in topographically heterogenous landscapes can be difficult. A method is presented for estimating multiscale surface roughness based on the standard deviation of surface normals. This method utilizes scale partitioning and integral image processing to isolate scales of surface complexity. The computational efficiency of the method enables high scale sampling density and identification of maximum roughness for each grid cell in a digital elevation model (DEM). The approach was applied to a 0.5 m resolution LiDAR DEM of a 210 km2 area near Brantford, Canada. The case study demonstrated substantial heterogeneity in roughness properties. At shorter scales, tillage patterns and other micro-topography associated with ground beneath forest cover dominated roughness scale signatures. Extensive agricultural land-use resulted in 35.6% of the site exhibiting maximum roughness at micro-topographic scales. At larger spatial scales, rolling morainal topography and fluvial landforms, including incised channels and meander cut banks, were associated with maximum surface roughness. This method allowed for roughness mapping at spatial scales that are locally adapted to the topographic context of each individual grid cell within a DEM. Furthermore, the analysis revealed significant differences in roughness characteristics among soil texture categories, demonstrating the practical utility of locally adaptive, scale-optimized roughness.
Multiscale methods have become progressively valuable in geomorphometric analysis as data have become increasingly detailed. This paper evaluates the theoretical and empirical properties of several common scaling approaches in geomorphometry. Direct interpolation (DI), cubic convolution resampling (RES), mean aggregation (MA), local quadratic regression (LQR), and an efficiency optimized Gaussian scale-space implementation (fGSS) method were tested. The results showed that when manipulating resolution, the choice of interpolator had a negligible impact relative to the effects of manipulating scale. The LQR method was not ideal for rigorous multiscale analyses due to the inherently non-linear processing time of the algorithm and an increasingly poor fit with the surface. The fGSS method combined several desirable properties and was identified as an optimal scaling method for geomorphometric analysis. The results support the efficacy of Gaussian scale-space as a general scaling framework for geomorphometric analyses.
Adverse outcome pathways have shown themselves to be useful ways of understanding and expressing knowledge about sequences of events that lead to adverse outcomes (AOs) such as toxicity. In this paper we use the building blocks of adverse outcome pathways—namely key events (KEs) and key event relationships—to construct networks which can be used to make predictions of the likelihood of AOs. The networks of KEs are augmented by data from and knowledge about assays as well as by structure activity relationship predictions linking chemical classes to the observation of KEs. These inputs are combined within a reasoning framework to produce an information-rich display of the relevant knowledge and data and predictions of AOs both in the abstract case and for individual chemicals. Illustrative examples are given for skin sensitization, reprotoxicity and non-genotoxic carcinogenicity.
Surface roughness is frequently measured using DEMs to characterize the ruggedness and topographic complexity of landscapes. Roughness maps have been applied in geological mapping, ecological modeling, and other environmental applications. These maps are typically derived using a rovingwindow approach, where kernel size dictates the scale at which roughness is assessed. The pattern of roughness is strongly scale dependent and this roughness-scaling relation can reveal useful information about the geomorphologic character of landscapes. This study applied hyper-scale analysis of a normal-vector based roughness metric for a LiDAR DEM of Rondeau Bay, Canada. The use of integral images, a data structure for computationally efficient filtering operations, allowed for the fine scale resolution of the analysis. The unique roughness scale signature of each grid cell in the DEM was derived for all spatial scales ranging from 3 to 5000 cells (7.5 m to 12,502.5 m). Maps of maximum roughness and the scale of maximum roughness were created for the study site. This cell-specific scaling approach to the characterization of surface roughness is in contrast to the use of single, often arbitrarily selected, kernel sizes to map topographic attributes. The additional information provided by the scale map was found to provide valuable ancillary data for landscape interpretation.I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.