Bees have a crucial role in pollination; therefore, it is important to determine the causes of their recent decline. Fipronil and imidacloprid are insecticides used worldwide to eliminate or control insect pests. Because they are broad-spectrum insecticides, they can also affect honeybees. Many researchers have studied the lethal and sublethal effects of these and other insecticides on honeybees, and some of these studies have demonstrated a correlation between the insecticides and colony collapse disorder in bees. The authors investigated the effects of fipronil and imidacloprid on the bioenergetic functioning of mitochondria isolated from the heads and thoraces of Africanized honeybees. Fipronil caused dose-dependent inhibition of adenosine 5'-diphosphate-stimulated (state 3) respiration in mitochondria energized by either pyruvate or succinate, albeit with different potentials, in thoracic mitochondria; inhibition was strongest when respiring with complex I substrate. Fipronil affected adenosine 5'-triphosphate (ATP) production in a dose-dependent manner in both tissues and substrates, though with different sensitivities. Imidacloprid also affected state-3 respiration in both the thorax and head, being more potent in head pyruvate-energized mitochondria; it also inhibited ATP production. Fipronil and imidacloprid had no effect on mitochondrial state-4 respiration. The authors concluded that fipronil and imidacloprid are inhibitors of mitochondrial bioenergetics, resulting in depleted ATP. This action can explain the toxicity of these compounds to honeybees.
The use of pesticides on crops contributes to the decline of bee populations, and in this sense, bioactive nutrients have been studied to counteract this effect. We suppose that caffeine might be one of these nutrients. We exposed honey bees (Apis mellifera L.) to 0.7 or 2.0 ng/mL imidacloprid, 5.0 μg/mL caffeine in syrup, or 5.0 μg/mL caffeine in syrup plus 0.7 or 2.0 ng/mL imidacloprid. After 72 h, the oxidative status and the food intake were verified. Imidacloprid increased glutathione peroxidase and catalase activities. Caffeine alone or with 2.0 ng/mL imidacloprid also stimulated the activity of glutathione peroxidase but did not alter the effect of the insecticide on the catalase activity. A significant reduction in the concentration of the thiol group of proteins was observed in the two imidacloprid-fed groups, and the addition of caffeine protected these groups. Imidacloprid increased the malondialdehyde concentration while the addition of caffeine partially decreased this effect. Food intake was higher for bees treated with 2.0 ng/mL imidacloprid. Our results show that imidacloprid increased the food intake resulting in oxidative damage, which was partially reversed by caffeine. From these findings, it is inferred that caffeine treatments can be used to mitigate the sublethal effects of this insecticide on honey bees.
The production of fruits and seeds of many crops is increased when bees visit their flowers pollinating them. The aim of this research was to study the pollination of pumpkins (Cucurbita maxima Duch. var. Exposição), to determine the diversity of insects visiting its flowers, the time and type of provision obtained and the effect of the visits on fruit set, fruit size and weight, and number of seeds. Apis mellifera L. accounted for 73.4% of the visits made by bees, collecting pollen during 34.5 s per flower and nectar in 43.9 s and 29.3 s from female and male flowers, respectively. Trigona spinipes (Fabr.) collected only nectar, during a mean time of 60.5 s per flower, and represented 26.6% of the visits by bees. Diabrotica speciosa (Germ.) only fed on the petals of the flower. When no insect visits occurred, there was no production of fruits. In the flowers with free visitation by insects, fruit set was 40%. The higher the number of visits, up to 16, by A. mellifera to female flowers, the greater was the fruit set, fruit size and weight, and number of seeds. In flowers visited by insects from the onset of anthesis until 9 a.m., fruit set was 35%. After 9 a.m., there was no fruit set, demonstrating the important role of A. mellifera as a pollinating agent of pumpkin, since it was the only insect visiting up to 9 a.m.
ABSTRACT. Honey bees use propolis to defend against invaders and disease organisms. As some colonies produce much more propolis than others, we investigated whether propolis collecting is associated with disease resistance traits, including hygienic behavior and resistance to the parasitic bee mite, Varroa destructor. The three highest (HP) and three lowest propolis-producing (LP) colonies among 36 Africanized honey bee colonies were initially selected. Queens and drones from these colonies were crossed through artificial insemination to produce five colonies of each of the following crosses: HP♀ X HP♂, LP♀ X HP♂, HP♀ X LP♂, and LP♀ X LP♂. Colonies headed by HP♀ X HP♂ queens produced significantly more propolis than those with HP♀ X LP♂ and LP♀ X HP♂ queens and these in turn produced significantly more propolis than those headed by LP♀ X LP♂ queens. The brood cell uncapping rate of the high-propolis-producing colonies in the hygienic behavior test was significantly superior to that of the other groups. The LP X LP group was significantly less hygienic than the two HP X LP crosses, based on the evaluation of the rate of removal of pin-killed pupae. The HP X HP colonies were significantly more hygienic than the other crosses. No significant differences were found in mite infestation rates among the groups of colonies; although overall, colony infestation rates were quite low (1.0 to 3.2 mites per 100 brood cells), which could have masked such effects. Honey and pollen stores were significantly and positively correlated with propolis production.
-Propolis has been proposed to affect honeybee health. To test this hypothesis, we initially evaluated propolis production in 36 honeybee colonies. The three highest (HP) and three lowest propolis-producing (LP) colonies had mean yields of 16.0 and 0.64 g, respectively. Queens and drones from these parental colonies were crossed by artificial insemination to produce five colonies each of the following crosses: HP♀×HP♂, HP♀× LP♂, LP♀×HP♂, and LP♀×LP♂. Colonies headed by HP♀×HP♂ queens produced 34 times more propolis than those headed by LP♀×LP♂ queens and five times more than those from the other two crosses. Newly emerged bees were marked to measure longevity, and egg and brood counts were made to determine brood survival rates. The colonies with queens derived from crosses between high-propolis-producing colonies had significantly higher brood viability and greater worker bee longevity. We conclude that colonies that collect more propolis are healthier and have longer-living bees.controlled mating / propolis / brood viability / longevity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.