Photoinitiated carbonylation of alkyl iodides with [11C]carbon monoxide (11C t1/2=20.4 min) is enhanced by ketones that have lowest-lying excited triplet state of npi* character. For example, adding 5 mol % of acetophenone increases radiochemical yields from 3 to 59% in brief 6-min long reactions. Similar or higher yields were achieved by adding di-tert-butyl peroxide. Since radicaloid npi* exited-state ketones and tert-butoxyl radicals have similar reactivity, the photosensitization proceeds most likely via a H-atom transfer mechanism rather than via energy transfer. We propose a mechanism that can account for the enhancement as well as for the formation of observed byproducts. The energy profile obtained by DFT calculations support the feasibility of the mechanism, and observed experimental differences in reactivity could be well rationalized by the calculated data. NBO calculations were performed to further analyze the obtained energetics. Various [carbonyl-11C]esters and some [carbonyl-11C]amides were synthesized in good radiochemical yields from primary and secondary alkyl iodides illustrating the utility of dialkyl peroxides to accelerate the carbonylations. These findings have potential in elaborating new synthetic protocols for the production of 11C-labeled tracers for positron emission tomography.
A computational study is undertaken to provide a unified picture for various rearrangement reactions and hydrogen scrambling pathways of the toluene radical cation (1). The geometries are optimized with the BHandHLYP density functional, and the energies are computed with the ab initio CCSD(T) method, in conjunction with the 6-311+G(d,p) basis set. In particular, four channels have been located, which may account for hydrogen scrambling, as they are found to have overall barriers lower than the observed threshold for hydrogen dissociation. These are a stepwise norcaradiene walk involved in the Hoffman mechanism, a rearrangement of 1 to the methylenecyclohexadiene radical cation (5) by successive [1,2]-H shifts via isotoluene radical cations, a series of [1,2]-H shifts in the cycloheptatriene radical cation (4), and a concerted norcaradiene walk. In addition, we have also investigated other pathways such as the suggested Dewar-Landman mechanism, which proceeds through 5, via two consecutive [1,2]-H shifts. This pathway is, however, found to be inactive as it involves too high reaction barriers. Moreover, a novel rearrangement pathway that connects 5 to the norcaradiene radical cation (3) has also been located in this work.
The stepwise and concerted pathways for the McLafferty rearrangement of the radical cations of butanal (Bu(+)) and 3-fluorobutanal (3F-Bu(+)) are investigated with density functional theory (DFT) and ab initio methods in conjunction with the 6-311+G(d,p) basis set. A concerted transition structure (TS) for Bu(+), (H), is located with a Gibbs barrier height of 37.7 kcal/mol as computed with CCSD(T)//BHandHLYP. Three pathways for the stepwise rearrangement of Bu(+) have been located, which are all found to involve different complexes. The barrier height for the H(gamma) transfer is found to be 2.2 kcal/mol, while the two most favorable TSs for the C(alpha)-C(beta) cleavage are located 8.9 and 9.2 kcal/mol higher. The energies of the 3F-Bu(+) system have been calculated with the promising hybrid meta-GGA MPWKCIS1K functional of DFT. Interestingly, the fluorine substitution yields a barrier height of only 20.5 kcal/mol for the concerted TS, (3F-H). A smaller computed dipole moment, 12.1 D, for (3F-H) compared with 103.2 D for (H) might explain the stabilization of the substituted TS. The H(gamma) transfer, with a barrier height of 4.9 kcal/mol, is found to be rate-determining for the stepwise McLafferty rearrangement of 3F-Bu(+), in contrast to the unsubstituted case. By inspection of the spin and charge distributions of the stationary points, it is noted that the bond cleavages in the concerted rearrangements are mainly of heterolytic nature, while those in the stepwise channels are found to be homolytic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.