In this paper, the aeroservoelastic modeling of a highly flexible flutter demonstrator is presented. A finite element model of the demonstrator is generated and condensed to a reduced number of degrees of freedom to represent the structural dynamics. The unsteady aerodynamics are captured by the doublet lattice method based on potential theory. By interconnection of structural dynamics and unsteady aerodynamics an aeroelastic model is derived, which provides a basis for the design of a flutter suppression controller. In order to enable an efficient flutter suppression a clear separation of the occurring flutter mechanisms in speed and frequency is desired. To achieve this, the positions of the actuators controlling the flaps are varied within the scope of the aircraft design process. Due to their large mass contribution, the placement of the actuators has a crucial impact on the overall flutter characteristics and optimal actuator positions are determined by means of a mass sensitivity study.
A linear parameter-varying (LPV) model-based synthesis, tuning and assessment methodology is developed and applied for the design of a robust fault detection and diagnosis (FDD) system for several types of flight actuator faults such as jamming, runaway, oscillatory failure, or loss of efficiency. The robust fault detection is achieved by using a synthesis approach based on an accurate approximation of the nonlinear actuator-control surface dynamics via an LPV model and an optimal tuning of the free parameters of the FDD system using multi-objective optimization techniques. Real-time signal processing is employed for identification of different fault types. The assessment of the FDD system robustness has been performed using both standard Monte Carlo methods as well as advanced worst-case search based optimization-driven robustness analysis. A supplementary industrial validation performed on the AIRBUS actuator test bench for the monitoring of jamming, confirmed the satisfactory performance of the FDD system in a true industrial setting.
The model-based flight control system design for a highly flexible flutter demonstrator, developed in the European FLEXOP project, is presented. The flight control system includes a baseline controller to operate the aircraft fully autonomously and a flutter suppression controller to stabilize the unstable aeroelastic modes and extend the aircraft’s operational range. The baseline control system features a classical cascade flight control structure with scheduled control loops to augment the lateral and longitudinal axis of the aircraft. The flutter suppression controller uses an advanced blending technique to blend the flutter relevant sensor and actuator signals. These blends decouple the unstable modes and individually control them by scheduled single loop controllers. For the tuning of the free parameters in the defined controller structures, a model-based approach solving multi-objective, non-linear optimization problems is used. The developed control system, including baseline and flutter control algorithms, is verified in an extensive simulation campaign using a high fidelity simulator. The simulator is embedded in MATLAB and a features non-linear model of the aircraft dynamics itself and detailed sensor and actuator descriptions.
Structural weight reduction and high aspect ratio wings play a key role in improving the performance of modern transport aircraft. This leads to a highly flexible aircraft structure which is sensitive to external disturbances like gusts. To counteract this undesired effect, active control is a promising technology. In this paper, a gust load alleviation controller is designed for a wind tunnel model of a flexible wing with various trailing edge flaps and acceleration sensors. For a sophisticated model-based controller design, a detailed aeroelastic model is derived describing the coupling of structural dynamics and aerodynamics. Additionally, actuator dynamics and structural modes are identified and used to improve model accuracy. Subsequently, the weakly damped first wing bending mode, which causes high structural loads, is isolated via H 2-optimal blending of control inputs and measurement outputs. In this way, a gain-scheduled single-input single-output controller can be designed to control the desired aeroelastic mode. Eventually, the great potential of the proposed control approach is verified by a wind tunnel test including different gust excitations and varying airspeeds.
The paper presents the control design approaches for the European research project FLEXOP. The ultimate goal is to develop and apply active flutter suppression and load alleviation techniques on an unmanned flying aircraft demonstrator. Due to the flexible wing of the aircraft new challenges rise for the control design: the traditional rigid body (baseline) control loops have to be augmented with flutter control laws. In our approach, the controllers are designed based on a dynamical model, which is briefly discussed first. Details of the baseline control design, as well as the two different flutter suppression algorithms are discussed in the paper. Hardware-in-the-Loop testing of the controllers are reported before the first test flights of the aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.