Summary Apicomplexan parasites release factors via specialized secretory organelles (rhoptries, micronemes) that are thought to control host cell responses. In order to explore parasite-mediated modulation of host cell signaling pathways, we exploited a phylogenomic approach to characterize the Toxoplasma gondii kinome, defining a 44 member family of coccidian-specific secreted kinases, some of which have been previously implicated in virulence. Comparative genomic analysis suggests that ‘ROPK’ genes are under positive selection, and expression profiling demonstrates that most are differentially expressed between strains and/or during differentiation. Integrating diverse genomic-scale analyses points to ROP38 as likely to be particularly important in parasite biology. Upregulating expression of this previously uncharacterized gene in transgenic parasites dramatically suppresses transcriptional responses in the infected cell. Specifically, parasite ROP38 down-regulates host genes associated with MAPK signaling and the control of apoptosis and proliferation. These results highlight the value of integrative genomic approaches in prioritizing candidates for functional validation.
The apicomplexan parasite Cryptosporidium is a leading global cause of severe diarrheal disease and an important contributor to early childhood mortality. Currently there are no fully effective treatments or vaccines available. Parasite transmission occurs through ingestion of oocysts, through either direct contact or contaminated water or food. Oocysts are meiotic spores and the product of parasite sex. Cryptosporidium has a single host lifecycle where both asexual and sexual processes unfold in the intestine of infected hosts. Here we use the ability to genetically engineer Cryptosporidium to make life cycle progression and parasite sex tractable. We derive reporter strains to follow parasite development in culture and infected mice and define the genes that orchestrate sex and oocyst formation through mRNA sequencing of sorted cells. After two days, parasites in cell culture show pronounced sexualization, but productive fertilization does not occur and infection falters. In contrast, in infected mice male gametes successfully fertilize female parasites, leading to meiotic division and sporulation. To rigorously test for fertilization, we devised a two-component genetic crossing assay employing a Cre recombinase activated reporter. Our findings suggest obligate developmental progression towards sex in Cryptosporidium, which has important implications for the treatment and prevention of the infection.
Disease progression in response to infection can be strongly influenced by both pathogen burden and infection-induced immunopathology. While current therapeutics focus on augmenting protective immune responses, identifying therapeutics that reduce infection-induced immunopathology are clearly warranted. Despite the apparent protective role for murine CD8+ T cells following infection with the intracellular parasite Leishmania, CD8+ T cells have been paradoxically linked to immunopathological responses in human cutaneous leishmaniasis. Transcriptome analysis of lesions from Leishmania braziliensis patients revealed that genes associated with the cytolytic pathway are highly expressed and CD8+ T cells from lesions exhibited a cytolytic phenotype. To determine if CD8+ T cells play a causal role in disease, we turned to a murine model. These studies revealed that disease progression and metastasis in L. braziliensis infected mice was independent of parasite burden and was instead directly associated with the presence of CD8+ T cells. In mice with severe pathology, we visualized CD8+ T cell degranulation and lysis of L. braziliensis infected cells. Finally, in contrast to wild-type CD8+ T cells, perforin-deficient cells failed to induce disease. Thus, we show for the first time that cytolytic CD8+ T cells mediate immunopathology and drive the development of metastatic lesions in cutaneous leishmaniasis.
TBET and CD11c expression in B cells is linked with IgG2c isotype switching, virus-specific immune responses, and humoral autoimmunity. However, the activation requisites and regulatory cues governing TBET and CD11c expression remain poorly defined. Herein we reveal a relationship between TLR engagement, IL4, IL21, and IFNγ that regulates TBET expression in B cells. We find that IL21 or IFNγ directly promote TBET+ expression in the context of TLR engagement. Further, IL4 antagonizes TBET induction. Finally, IL21, but not IFNγ, promotes CD11c expression independent of TBET. Using influenza virus and H. polygyrus infections, we show that these interactions function in vivo to determine whether TBET+ and CD11c+ B cells are formed. These findings suggest that TBET+ B cells seen in health and disease share the common initiating features of TLR driven activation within this circumscribed cytokine milieu.
Serum immunoglobulin A (IgA) antibodies are readily detected in mice and people, but the mechanisms underlying the induction of serum IgA and its role in host protection remain uncertain. We report that select commensal bacteria induce several facets of systemic IgA-mediated immunity. Exposing conventional mice to a unique but natural microflora that included several members of the Proteobacteria phylum led to T cell-dependent increases in serum IgA levels and the induction of large numbers of IgA-secreting plasma cells in the bone marrow. The resulting serum IgA bound to a restricted collection of bacterial taxa, and antigen-specific serum IgA antibodies were readily induced after intestinal colonization with the commensal bacterium Helicobacter muridarum. Finally, movement to a Proteobacteria-rich microbiota led to serum IgA-mediated resistance to polymicrobial sepsis. We conclude that commensal microbes overtly influence the serum IgA repertoire, resulting in constitutive protection against bacterial sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.