Enzymes that produce retinal and related apocarotenoids constitute a sequence- and thus structure-related family, a member of which was analyzed by x-ray diffraction. This member is an oxygenase and contains an Fe2+-4-His arrangement at the axis of a seven-bladed beta-propeller chain fold covered by a dome formed by six large loops. The Fe2+ is accessible through a long nonpolar tunnel that holds a carotenoid derivative in one of the crystals. On binding, three consecutive double bonds of this carotenoid changed from a straight all-trans to a cranked cis-trans-cis conformation. The remaining trans bond is located at the dioxygen-ligated Fe2+ and cleaved by oxygen.
A systematic analysis of the dimerization, membrane remodelling and higher order assembly properties of all 12 human SNX-BAR sorting nexins reveals how different SNX-BAR combinations allow the formation of distinct tubular subdomains from the same endosomal vacuole during cargo sorting.
Anaerobic degradation of hydrocarbons was discovered a decade ago, and ethylbenzene dehydrogenase was one of the first characterized enzymes involved. The structure of the soluble periplasmic 165 kDa enzyme was established at 1.88 A resolution. It is a heterotrimer. The alpha subunit contains the catalytic center with a molybdenum held by two molybdopterin-guanine dinucleotides, one with an open pyran ring, and an iron-sulfur cluster with a histidine ligand. During catalysis, electrons produced by substrate oxidation are transferred to a heme in the gamma subunit and then presumably to a separate cytochrome involved in nitrate respiration. The beta subunit contains four iron-sulfur clusters and is structurally related to ferredoxins. The gamma subunit is the first known protein with a methionine and a lysine as axial heme ligands. The catalytic product was modeled into the active center, showing the reaction geometry. A mechanism consistent with activity and inhibition data of ethylbenzene-related compounds is proposed.
Apo-carotenoid compounds such as retinol (vitamin A) are involved in a variety of cellular processes and are found in all kingdoms of life. Instead of being synthesized from small precursors, they are commonly produced by oxidative cleavage and subsequent modification of larger carotenoid compounds. The cleavage reaction is catalyzed by a family of related enzymes, which convert specific substrate double bonds to the corresponding aldehydes or ketones. The individual family members differ in their substrate preference and the position of the cleaved double bond, giving rise to a remarkable number of products starting from a limited number of carotenoid substrate molecules. The recent determination of the structure of a member of this family has provided insight into the reaction mechanism, showing how substrate specificity is achieved. This review will focus on the biochemistry of carotenoid oxygenases and the structural determinants of the cleavage reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.