The Fe(II) spin crossover complex [Fe{H B(pz) } (bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) can be locked in a largely low-spin-state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO and Al O , or in powder samples by mixing with the strongly dipolar zwitterionic p-benzoquinonemonoimine C H (-⋯ NH ) (-⋯ O) . Remarkably, it is found in both cases that incident X-ray fluences then restore the [Fe{H B(pz) } (bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light- or X-ray-induced excited-spin-state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment.
A strategy to synthesize a 2D graphenic but ternary monolayer containing atoms of carbon, nitrogen, and boron, h-BCN, is presented. The synthesis utilizes bis-BN cyclohexane, B 2 N 2 C 2 H 12 , as a precursor molecule and relies on thermally induced dehydrogenation of the precursor molecules and the formation of an epitaxial monolayer on Ir(111) through covalent bond formation. The lattice mismatch between the film and substrate causes a strain-driven periodic buckling of the film. The structure of the film and its corrugated morphology is discussed based on comprehensive data from molecular-resolved scanning tunneling microscopy imaging, X-ray photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. First-principles calculations further predict a direct electronic band gap that is intermediate between gapless graphene and insulating h-BN.
The role of dipole-dipole interactions in the self-assembly of dipolar organic molecules on surfaces is investigated. As a model system, strongly dipolar model molecules, p-benzoquinonemonoimine zwitterions (ZI) of type C 6 H 2 (· · · NHR) 2 (· · · O) 2 on crystalline coinage metal surfaces were investigated with scanning tunneling microscopy and first principles calculations. Depending on the substrate, the molecules assemble into small clusters, nano gratings, and stripes, as well as in two-dimensional islands. The alignment of the molecular dipoles in those assemblies only rarely assumes the lowest electrostatic energy configuration. Based on calculations of the electrostatic energy for various experimentally observed molecular arrangements and under consideration of computed dipole moments of adsorbed molecules, the electrostatic energy minimization is ruled out as the driving force in the self-assembly. The structures observed are mainly the result of a competition between chemical interactions and substrate effects. The substrate's role in the self-assembly is to (i) reduce and realign the molecular dipole through charge donation and back donation involving both the molecular HOMO and LUMO, (ii) dictate the epitaxial orientation of the adsorbates, specifically so on Cu(111), and (iii) inhibit attractive forces between neighboring chains in the system ZI/Cu(111), which results in regularly spaced molecular gratings. C 2015 AIP Publishing LLC. [http://dx
Atomically precise chevron graphene nanoribbons (GNRs) have been synthesized on Cu(111) substrates by the surface-assisted coupling of 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (CBrH) and thermal cyclodehydrogenation of the resulting polymer. The GNRs form on Cu(111) epitaxially along the 〈112〉 crystallographic directions, which was found to be in agreement with the computational results, and at lower temperatures than on Au(111). This work demonstrates that the substrate plays an important role in the on-surface synthesis of GNRs and can result in new assembly modes of GNR structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.