New biobased materials and chemicals require different processing strategies than petroleum-derived commodities. The extraction and recovery of polyhydroxyalkanoate (PHA) biopolymers from the residual cellular biomass is particularly difficult because the polymer is accumulated within the cell. PHAs have low solubility in many classical polymer solvents and are most often dissolved using undesirable chlorinated solvents. The solubility kinetics is greatly diminished when these polymers are highly crystalline. Here, 1,2-propylene carbonate is used to dissolve highly crystalline polyhydroxybutyrate at ambient pressures and moderate temperatures. We have used kinetic studies of the dissolution of the crystalline material to determine the energy barrier for dissolution of the system. Further, the degradation of polyhydroxybutyrate and similarly prepared PHA block copolymers were studied during this extraction process using molecular weight characterization by gel permeation chromatography. Finally, we have used these findings to extract PHA block copolymers from dried biomass at the bench scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.